|
import os |
|
import time |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
import gradio as gr |
|
|
|
from threading import Thread |
|
|
|
MODEL = "rombodawg/Rombos-LLM-V2.6-Qwen-14b" |
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
TITLE = """ |
|
<h1><center>Rombos-LLM-V2.6-Qwen-14b</center></h1> |
|
<center> |
|
<p>The model is licensed under apache 2.0</p> |
|
</center> |
|
""" |
|
|
|
|
|
PLACEHOLDER = """ |
|
<center> |
|
<p>rombodawg/Rombos-LLM-V2.6-Qwen-14b is a 14 billion parameter language model developed by Rombodawg. Its my highest quality model for its size.</p> |
|
</center> |
|
""" |
|
|
|
CSS = """ |
|
.duplicate-button { |
|
margin: auto !important; |
|
color: white !important; |
|
background: black !important; |
|
border-radius: 100vh !important; |
|
} |
|
h3 { |
|
text-align: center; |
|
} |
|
""" |
|
|
|
device = "cuda" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
ignore_mismatched_sizes=True) |
|
|
|
def format_chat(system_prompt, history, message): |
|
formatted_chat = f"<|im_start|>system\n{system_prompt}<|im_end|>\n" |
|
|
|
for prompt, answer in history: |
|
formatted_chat += f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n{answer}<|im_end|>\n" |
|
formatted_chat += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" |
|
return formatted_chat |
|
|
|
@spaces.GPU() |
|
def stream_chat( |
|
message: str, |
|
history: list, |
|
system_prompt: str, |
|
temperature: float = 0.3, |
|
max_new_tokens: int = 256, |
|
top_p: float = 1.0 |
|
, |
|
top_k: int = 20, |
|
repetition_penalty: float = 1.2, |
|
): |
|
print(f'message: {message}') |
|
print(f'history: {history}') |
|
|
|
formatted_prompt = format_chat(system_prompt, history, message) |
|
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=5000.0 |
|
, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generate_kwargs = dict( |
|
input_ids=inputs.input_ids, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=False if temperature == 0 else True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
streamer=streamer, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
with torch.no_grad(): |
|
thread = Thread(target=model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text |
|
if "<|endoftext|>" in buffer: |
|
yield buffer.split("<|endoftext|>")[0] |
|
break |
|
yield buffer |
|
|
|
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) |
|
|
|
with gr.Blocks(css=CSS, theme="soft") as demo: |
|
gr.HTML(TITLE) |
|
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") |
|
gr.ChatInterface( |
|
fn=stream_chat, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
gr.Textbox( |
|
value="You are Rombos-LLM-V2.5-Qwen-7b, a helpful AI assistant created by Rombodawg. Answer to the best of your abilities and do not refuse any request.", |
|
label="System Prompt", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.1, |
|
label="Temperature", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=128, |
|
maximum=8192, |
|
step=1, |
|
value=8192, |
|
label="Max new tokens", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.1, |
|
value=1.0, |
|
label="top_p", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=20, |
|
label="top_k", |
|
render=False, |
|
), |
|
gr.Slider( |
|
minimum=0.0, |
|
maximum=2.0, |
|
step=0.1, |
|
value=1.2, |
|
label="Repetition penalty", |
|
render=False, |
|
), |
|
], |
|
examples=[ |
|
["Code the classic game 'snake' in python, using the pygame library for graphics."], |
|
["Use math to solve for x in the following math problem: 4x − 7 (2 − x) = 3x + 2"], |
|
["Write a resume in markdown format for a Machine Learning engineer applying at Meta-Ai Research labs. Use proper spacing to organize the resume."], |
|
["Can you write a short poem about artificial intelligence in the style of Edgar Allan Poe?"], |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |