File size: 4,468 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
from typing import Dict, Optional

from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.models import FairseqDecoder
from torch import Tensor


logger = logging.getLogger(__name__)


@with_incremental_state
class FairseqIncrementalDecoder(FairseqDecoder):
    """Base class for incremental decoders.

    Incremental decoding is a special mode at inference time where the Model
    only receives a single timestep of input corresponding to the previous
    output token (for teacher forcing) and must produce the next output
    *incrementally*. Thus the model must cache any long-term state that is
    needed about the sequence, e.g., hidden states, convolutional states, etc.

    Compared to the standard :class:`FairseqDecoder` interface, the incremental
    decoder interface allows :func:`forward` functions to take an extra keyword
    argument (*incremental_state*) that can be used to cache state across
    time-steps.

    The :class:`FairseqIncrementalDecoder` interface also defines the
    :func:`reorder_incremental_state` method, which is used during beam search
    to select and reorder the incremental state based on the selection of beams.

    To learn more about how incremental decoding works, refer to `this blog
    <http://www.telesens.co/2019/04/21/understanding-incremental-decoding-in-fairseq/>`_.
    """

    def __init__(self, dictionary):
        super().__init__(dictionary)

    def forward(
        self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs
    ):
        """
        Args:
            prev_output_tokens (LongTensor): shifted output tokens of shape
                `(batch, tgt_len)`, for teacher forcing
            encoder_out (dict, optional): output from the encoder, used for
                encoder-side attention
            incremental_state (dict, optional): dictionary used for storing
                state during :ref:`Incremental decoding`

        Returns:
            tuple:
                - the decoder's output of shape `(batch, tgt_len, vocab)`
                - a dictionary with any model-specific outputs
        """
        raise NotImplementedError

    def extract_features(
        self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs
    ):
        """
        Returns:
            tuple:
                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - a dictionary with any model-specific outputs
        """
        raise NotImplementedError

    def reorder_incremental_state(
        self,
        incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
        new_order: Tensor,
    ):
        """Reorder incremental state.

        This will be called when the order of the input has changed from the
        previous time step. A typical use case is beam search, where the input
        order changes between time steps based on the selection of beams.
        """
        pass

    def reorder_incremental_state_scripting(
        self,
        incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
        new_order: Tensor,
    ):
        """Main entry point for reordering the incremental state.

        Due to limitations in TorchScript, we call this function in
        :class:`fairseq.sequence_generator.SequenceGenerator` instead of
        calling :func:`reorder_incremental_state` directly.
        """
        for module in self.modules():
            if hasattr(module, "reorder_incremental_state"):
                result = module.reorder_incremental_state(incremental_state, new_order)
                if result is not None:
                    incremental_state = result

    def set_beam_size(self, beam_size):
        """Sets the beam size in the decoder and all children."""
        if getattr(self, "_beam_size", -1) != beam_size:
            seen = set()

            def apply_set_beam_size(module):
                if (
                    module != self
                    and hasattr(module, "set_beam_size")
                    and module not in seen
                ):
                    seen.add(module)
                    module.set_beam_size(beam_size)

            self.apply(apply_set_beam_size)
            self._beam_size = beam_size