File size: 42,519 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
from typing import Any, Dict, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from fairseq import utils
from fairseq.models import (
    FairseqEncoder,
    FairseqEncoderDecoderModel,
    FairseqIncrementalDecoder,
    register_model,
    register_model_architecture,
)
from fairseq.modules import (
    AdaptiveSoftmax,
    DynamicConv_scripatable as DynamicConv,
    FairseqDropout,
    LayerNorm,
    LightweightConv,
    MultiheadAttention,
    PositionalEmbedding,
)
from fairseq.utils import safe_hasattr
from torch import Tensor


@register_model("lightconv")
class LightConvModel(FairseqEncoderDecoderModel):
    """
    LightConv and DynamicConv model from `"Pay Less Attention with Lightweight and Dynamic Convolutions" (Wu, et al, 2019)
    <https://openreview.net/pdf?id=SkVhlh09tX>`_.
    To use LightConv please set ``--encoder-conv-type lightweight --decoder-conv-type lightweight``
    To use DynamicConv please set ``--encoder-conv-type dynamic --decoder-conv-type dynamic``

    Args:
        encoder (LightConvEncoder): the encoder
        decoder (LightConvDecoder): the decoder

    The LightConv model provides the following named architectures and
    command-line arguments:

    .. argparse::
        :ref: fairseq.models.lightconv_parser
        :prog:
    """

    @classmethod
    def hub_models(cls):
        # fmt: off

        def moses_subword(path):
            return {
                'path': path,
                'tokenizer': 'moses',
                'bpe': 'subword_nmt',
            }

        return {
            'lightconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.lightconv.tar.gz'),
            'dynamicconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.dynamicconv.tar.gz'),
            'lightconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv.tar.gz'),
            'dynamicconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv.tar.gz'),
            'lightconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'),
            'dynamicconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'),
            'lightconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'),
            'dynamicconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'),
            'lightconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.lightconv-glu.tar.gz'),
            'dynamicconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.dynamicconv-glu.tar.gz'),
            'lightconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.lightconv-glu.tar.gz'),
            'dynamicconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.dynamicconv-glu.tar.gz'),
        }
        # fmt: on

    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        parser.add_argument(
            "--dropout", type=float, metavar="D", help="dropout probability"
        )
        parser.add_argument(
            "--attention-dropout",
            type=float,
            metavar="D",
            help="dropout probability for attention weights",
        )
        parser.add_argument(
            "--relu-dropout",
            type=float,
            metavar="D",
            help="dropout probability after ReLU in FFN",
        )
        parser.add_argument(
            "--input-dropout",
            type=float,
            metavar="D",
            help="dropout probability of the inputs",
        )
        parser.add_argument(
            "--encoder-embed-path",
            type=str,
            metavar="STR",
            help="path to pre-trained encoder embedding",
        )
        parser.add_argument(
            "--encoder-embed-dim",
            type=int,
            metavar="N",
            help="encoder embedding dimension",
        )
        parser.add_argument(
            "--encoder-conv-dim",
            type=int,
            metavar="N",
            help="encoder embedding dimension",
        )
        parser.add_argument(
            "--encoder-ffn-embed-dim",
            type=int,
            metavar="N",
            help="encoder embedding dimension for FFN",
        )
        parser.add_argument(
            "--encoder-layers", type=int, metavar="N", help="num encoder layers"
        )
        parser.add_argument(
            "--encoder-attention-heads",
            type=int,
            metavar="N",
            help="num encoder attention heads or LightConv/DynamicConv heads",
        )
        parser.add_argument(
            "--encoder-normalize-before",
            action="store_true",
            help="apply layernorm before each encoder block",
        )
        parser.add_argument(
            "--encoder-learned-pos",
            action="store_true",
            help="use learned positional embeddings in the encoder",
        )
        parser.add_argument(
            "--decoder-embed-path",
            type=str,
            metavar="STR",
            help="path to pre-trained decoder embedding",
        )
        parser.add_argument(
            "--decoder-embed-dim",
            type=int,
            metavar="N",
            help="decoder embedding dimension",
        )
        parser.add_argument(
            "--decoder-conv-dim",
            type=int,
            metavar="N",
            help="decoder embedding dimension",
        )
        parser.add_argument(
            "--decoder-ffn-embed-dim",
            type=int,
            metavar="N",
            help="decoder embedding dimension for FFN",
        )
        parser.add_argument(
            "--decoder-layers", type=int, metavar="N", help="num decoder layers"
        )
        parser.add_argument(
            "--decoder-attention-heads",
            type=int,
            metavar="N",
            help="num decoder attention heads or LightConv/DynamicConv heads",
        )
        parser.add_argument(
            "--decoder-learned-pos",
            action="store_true",
            help="use learned positional embeddings in the decoder",
        )
        parser.add_argument(
            "--decoder-normalize-before",
            action="store_true",
            help="apply layernorm before each decoder block",
        )
        parser.add_argument(
            "--share-decoder-input-output-embed",
            action="store_true",
            help="share decoder input and output embeddings",
        )
        parser.add_argument(
            "--share-all-embeddings",
            action="store_true",
            help="share encoder, decoder and output embeddings"
            " (requires shared dictionary and embed dim)",
        )
        parser.add_argument(
            "--adaptive-softmax-cutoff",
            metavar="EXPR",
            help="comma separated list of adaptive softmax cutoff points. "
            "Must be used with adaptive_loss criterion",
        ),
        parser.add_argument(
            "--adaptive-softmax-dropout",
            type=float,
            metavar="D",
            help="sets adaptive softmax dropout for the tail projections",
        )

        """LightConv and DynamicConv arguments"""
        parser.add_argument(
            "--encoder-kernel-size-list",
            type=lambda x: utils.eval_str_list(x, int),
            help='list of kernel size (default: "[3,7,15,31,31,31,31]")',
        )
        parser.add_argument(
            "--decoder-kernel-size-list",
            type=lambda x: utils.eval_str_list(x, int),
            help='list of kernel size (default: "[3,7,15,31,31,31]")',
        )
        parser.add_argument(
            "--encoder-glu", type=utils.eval_bool, help="glu after in proj"
        )
        parser.add_argument(
            "--decoder-glu", type=utils.eval_bool, help="glu after in proj"
        )
        parser.add_argument(
            "--encoder-conv-type",
            default="dynamic",
            type=str,
            choices=["dynamic", "lightweight"],
            help="type of convolution",
        )
        parser.add_argument(
            "--decoder-conv-type",
            default="dynamic",
            type=str,
            choices=["dynamic", "lightweight"],
            help="type of convolution",
        )
        parser.add_argument("--weight-softmax", default=True, type=utils.eval_bool)
        parser.add_argument(
            "--weight-dropout",
            type=float,
            metavar="D",
            help="dropout probability for conv weights",
        )

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present in older models
        base_architecture(args)

        if not safe_hasattr(args, "max_source_positions"):
            args.max_source_positions = 1024
        if not safe_hasattr(args, "max_target_positions"):
            args.max_target_positions = 1024

        src_dict, tgt_dict = task.source_dictionary, task.target_dictionary

        def build_embedding(dictionary, embed_dim, path=None):
            num_embeddings = len(dictionary)
            padding_idx = dictionary.pad()
            emb = Embedding(num_embeddings, embed_dim, padding_idx)
            # if provided, load from preloaded dictionaries
            if path:
                embed_dict = utils.parse_embedding(path)
                utils.load_embedding(embed_dict, dictionary, emb)
            return emb

        if args.share_all_embeddings:
            if src_dict != tgt_dict:
                raise RuntimeError(
                    "--share-all-embeddings requires a joined dictionary"
                )
            if args.encoder_embed_dim != args.decoder_embed_dim:
                raise RuntimeError(
                    "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
                )
            if args.decoder_embed_path and (
                args.decoder_embed_path != args.encoder_embed_path
            ):
                raise RuntimeError(
                    "--share-all-embeddings not compatible with --decoder-embed-path"
                )
            encoder_embed_tokens = build_embedding(
                src_dict, args.encoder_embed_dim, args.encoder_embed_path
            )
            decoder_embed_tokens = encoder_embed_tokens
            args.share_decoder_input_output_embed = True
        else:
            encoder_embed_tokens = build_embedding(
                src_dict, args.encoder_embed_dim, args.encoder_embed_path
            )
            decoder_embed_tokens = build_embedding(
                tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
            )

        encoder = LightConvEncoder(args, src_dict, encoder_embed_tokens)
        decoder = LightConvDecoder(args, tgt_dict, decoder_embed_tokens)
        return LightConvModel(encoder, decoder)

    def forward(
        self,
        src_tokens: Tensor,
        src_lengths: Tensor,
        prev_output_tokens: Tensor,
    ):
        """
        (The forward method inherited from the base class has a **kwargs
        argument in its input, which is not supported in torchscript. This
        method overwrites the forward method definition without **kwargs.)

        Run the forward pass for an encoder-decoder model.

        First feed a batch of source tokens through the encoder. Then, feed the
        encoder output and previous decoder outputs (i.e., teacher forcing) to
        the decoder to produce the next outputs::

            encoder_out = self.encoder(src_tokens, src_lengths)
            return self.decoder(prev_output_tokens, encoder_out)

        Args:
            src_tokens (LongTensor): tokens in the source language of shape
                `(batch, src_len)`
            src_lengths (LongTensor): source sentence lengths of shape `(batch)`
            prev_output_tokens (LongTensor): previous decoder outputs of shape
                `(batch, tgt_len)`, for teacher forcing

        Returns:
            tuple:
                - the decoder's output of shape `(batch, tgt_len, vocab)`
                - a dictionary with any model-specific outputs
        """
        encoder_out = self.encoder(src_tokens, src_lengths)
        decoder_out = self.decoder(prev_output_tokens, encoder_out=encoder_out)
        return decoder_out


class LightConvEncoder(FairseqEncoder):
    """
    LightConv encoder consisting of *args.encoder_layers* layers. Each layer
    is a :class:`LightConvEncoderLayer`.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        dictionary (~fairseq.data.Dictionary): encoding dictionary
        embed_tokens (torch.nn.Embedding): input embedding
    """

    def __init__(self, args, dictionary, embed_tokens):
        super().__init__(dictionary)
        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__
        )

        embed_dim = embed_tokens.embedding_dim
        self.padding_idx = embed_tokens.padding_idx
        self.max_source_positions = args.max_source_positions

        self.embed_tokens = embed_tokens
        self.embed_scale = math.sqrt(embed_dim)
        self.embed_positions = (
            PositionalEmbedding(
                args.max_source_positions,
                embed_dim,
                self.padding_idx,
                learned=args.encoder_learned_pos,
            )
            if not args.no_token_positional_embeddings
            else None
        )

        self.layers = nn.ModuleList([])
        self.layers.extend(
            [
                LightConvEncoderLayer(
                    args, kernel_size=args.encoder_kernel_size_list[i]
                )
                for i in range(args.encoder_layers)
            ]
        )
        self.register_buffer("version", torch.Tensor([2]))
        self.normalize = args.encoder_normalize_before
        if self.normalize:
            self.layer_norm = LayerNorm(embed_dim)
        else:
            self.layer_norm = None

    def forward(
        self, src_tokens: Tensor, src_lengths: Optional[Tensor] = None
    ) -> Dict[str, List[Tensor]]:
        """
        Args:
            src_tokens (LongTensor): tokens in the source language of shape
                `(batch, src_len)`

        Returns:
            dict:
                - **encoder_out** (Tensor): the last encoder layer's output of
                  shape `(src_len, batch, embed_dim)`
                - **encoder_padding_mask** (ByteTensor): the positions of
                  padding elements of shape `(batch, src_len)`
        """
        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(src_tokens)
        if self.embed_positions is not None:
            x += self.embed_positions(src_tokens)
        x = self.dropout_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        # compute padding mask
        encoder_padding_mask = src_tokens.eq(self.padding_idx)  # B x T
        if not encoder_padding_mask.any():
            encoder_mask = None
        else:
            encoder_mask = encoder_padding_mask

        # encoder layers
        for layer in self.layers:
            x = layer(x, encoder_mask)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        output_dict: Dict[str, List[Tensor]] = {}
        if src_lengths is not None:
            output_dict["src_lengths"] = [src_lengths]
        output_dict["encoder_out"] = [x]  # T x B x C
        if encoder_mask is not None:
            output_dict["encoder_padding_mask"] = [encoder_mask]  # B x T

        return output_dict

    @torch.jit.export
    def reorder_encoder_out(
        self, encoder_out: Dict[str, List[Tensor]], new_order: Tensor
    ):
        """
        Reorder encoder output according to *new_order*.

        Args:
            encoder_out: output from the ``forward()`` method
            new_order (LongTensor): desired order

        Returns:
            *encoder_out* rearranged according to *new_order*
        """
        if len(encoder_out["encoder_out"]) == 0:
            encoder = []
        else:
            encoder = [encoder_out["encoder_out"][0].index_select(1, new_order)]
        output_dict = {"encoder_out": encoder}

        if ("encoder_padding_mask" not in encoder_out) or (
            len(encoder_out["encoder_padding_mask"]) == 0
        ):
            encoder_padding_mask = []
        else:
            encoder_padding_mask = [
                encoder_out["encoder_padding_mask"][0].index_select(0, new_order)
            ]
        output_dict["encoder_padding_mask"] = encoder_padding_mask
        return output_dict

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        if self.embed_positions is None:
            return self.max_source_positions
        return min(self.max_source_positions, self.embed_positions.max_positions)


class LightConvDecoder(FairseqIncrementalDecoder):
    """
    LightConv decoder consisting of *args.decoder_layers* layers. Each layer
    is a :class:`LightConvDecoderLayer`.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        dictionary (~fairseq.data.Dictionary): decoding dictionary
        embed_tokens (torch.nn.Embedding): output embedding
        no_encoder_attn (bool, optional): whether to attend to encoder outputs.
            Default: ``False``
    """

    def __init__(
        self, args, dictionary, embed_tokens, no_encoder_attn=False, final_norm=True
    ):
        super().__init__(dictionary)
        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__
        )
        self.share_input_output_embed = args.share_decoder_input_output_embed

        input_embed_dim = embed_tokens.embedding_dim
        embed_dim = args.decoder_embed_dim
        output_embed_dim = args.decoder_output_dim

        padding_idx = embed_tokens.padding_idx
        self.max_target_positions = args.max_target_positions

        self.embed_tokens = embed_tokens
        self.embed_scale = math.sqrt(embed_dim)  # todo: try with input_embed_dim

        self.project_in_dim = (
            Linear(input_embed_dim, embed_dim, bias=False)
            if embed_dim != input_embed_dim
            else None
        )

        self.embed_positions = (
            PositionalEmbedding(
                args.max_target_positions,
                embed_dim,
                padding_idx,
                learned=args.decoder_learned_pos,
            )
            if not args.no_token_positional_embeddings
            else None
        )

        self.layers = nn.ModuleList([])
        self.layers.extend(
            [
                LightConvDecoderLayer(
                    args,
                    no_encoder_attn,
                    kernel_size=args.decoder_kernel_size_list[i],
                    dictionary=dictionary,
                )
                for i in range(args.decoder_layers)
            ]
        )

        self.adaptive_softmax = None
        self.output_projection = None

        self.project_out_dim = (
            Linear(embed_dim, output_embed_dim, bias=False)
            if embed_dim != output_embed_dim and not args.tie_adaptive_weights
            else None
        )

        if args.adaptive_softmax_cutoff is not None:
            self.adaptive_softmax = AdaptiveSoftmax(
                len(dictionary),
                output_embed_dim,
                utils.eval_str_list(args.adaptive_softmax_cutoff, type=int),
                dropout=args.adaptive_softmax_dropout,
                adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None,
                factor=args.adaptive_softmax_factor,
                tie_proj=args.tie_adaptive_proj,
            )
        elif self.share_input_output_embed:
            self.output_projection = nn.Linear(
                self.embed_tokens.weight.shape[1],
                self.embed_tokens.weight.shape[0],
                bias=False,
            )
            self.output_projection.weight = self.embed_tokens.weight

        else:
            self.output_projection = nn.Linear(
                output_embed_dim, len(dictionary), bias=False
            )
            nn.init.normal_(
                self.output_projection.weight, mean=0, std=output_embed_dim**-0.5
            )
        self.register_buffer("version", torch.Tensor([2]))
        self.normalize = args.decoder_normalize_before and final_norm
        if self.normalize:
            self.layer_norm = LayerNorm(embed_dim)
        else:
            self.layer_norm = None

    def forward(
        self,
        prev_output_tokens: Tensor,
        encoder_out: Optional[Dict[str, List[Tensor]]] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        src_lengths: Optional[Any] = None,
    ):
        """
        Args:
            prev_output_tokens (LongTensor): previous decoder outputs of shape
                `(batch, tgt_len)`, for teacher forcing
            encoder_out (Tensor, optional): output from the encoder, used for
                encoder-side attention
            incremental_state (dict): dictionary used for storing state during
                :ref:`Incremental decoding`

        Returns:
            tuple:
                - the last decoder layer's output of shape `(batch, tgt_len,
                  vocab)`
                - the last decoder layer's attention weights of shape `(batch,
                  tgt_len, src_len)`
        """
        # embed positions
        positions = (
            self.embed_positions(
                prev_output_tokens,
                incremental_state=incremental_state,
            )
            if self.embed_positions is not None
            else None
        )

        if incremental_state is not None:
            prev_output_tokens = prev_output_tokens[:, -1:]
            if positions is not None:
                positions = positions[:, -1:]

        # embed tokens and positions
        x = self.embed_scale * self.embed_tokens(prev_output_tokens.contiguous())

        if self.project_in_dim is not None:
            x = self.project_in_dim(x)

        if positions is not None:
            x += positions
        x = self.dropout_module(x)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)
        attn = None

        inner_states: List[Optional[Tensor]] = [x]

        # decoder layers
        attn: Optional[Tensor] = None
        for layer in self.layers:
            encoder: Optional[Tensor] = None
            encoder_padding_mask: Optional[Tensor] = None
            if encoder_out is not None:
                if len(encoder_out["encoder_out"]) > 0:
                    encoder = encoder_out["encoder_out"][0]
                if (
                    "encoder_padding_mask" in encoder_out
                    and len(encoder_out["encoder_padding_mask"]) > 0
                ):
                    encoder_padding_mask = encoder_out["encoder_padding_mask"][0]
            x, attn = layer(
                x,
                encoder,
                encoder_padding_mask,
                incremental_state,
            )
            inner_states.append(x)

        if self.layer_norm is not None:
            x = self.layer_norm(x)

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        if self.project_out_dim is not None:
            x = self.project_out_dim(x)

        if self.adaptive_softmax is None:
            # project back to size of vocabulary
            x = self.output_projection(x)

        return x, {"attn": [attn], "inner_states": inner_states}

    def max_positions(self):
        """Maximum output length supported by the decoder."""
        if self.embed_positions is None:
            return self.max_target_positions
        return min(self.max_target_positions, self.embed_positions.max_positions)

    def buffered_future_mask(self, tensor):
        dim = tensor.size(0)
        if (
            not hasattr(self, "_future_mask")
            or self._future_mask is None
            or self._future_mask.device != tensor.device
        ):
            self._future_mask = torch.triu(
                utils.fill_with_neg_inf(tensor.new(dim, dim)), 1
            )
        if self._future_mask.size(0) < dim:
            self._future_mask = torch.triu(
                utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1
            )
        return self._future_mask[:dim, :dim]


class LightConvEncoderLayer(nn.Module):
    """Encoder layer block.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        kernel_size: kernel size of the convolution
    """

    def __init__(self, args, kernel_size=0):
        super().__init__()
        self.embed_dim = args.encoder_embed_dim
        self.conv_dim = args.encoder_conv_dim
        padding_l = (
            kernel_size // 2
            if kernel_size % 2 == 1
            else ((kernel_size - 1) // 2, kernel_size // 2)
        )

        if args.encoder_glu:
            self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim)
            self.act = nn.GLU()
        else:
            self.linear1 = Linear(self.embed_dim, self.conv_dim)
            self.act = None
        if args.encoder_conv_type == "lightweight":
            self.conv = LightweightConv(
                self.conv_dim,
                kernel_size,
                padding_l=padding_l,
                weight_softmax=args.weight_softmax,
                num_heads=args.encoder_attention_heads,
                weight_dropout=args.weight_dropout,
            )
        elif args.encoder_conv_type == "dynamic":
            self.conv = DynamicConv(
                self.conv_dim,
                kernel_size,
                padding_l=padding_l,
                weight_softmax=args.weight_softmax,
                num_heads=args.encoder_attention_heads,
                weight_dropout=args.weight_dropout,
            )
        else:
            raise NotImplementedError
        self.linear2 = Linear(self.conv_dim, self.embed_dim)

        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__
        )
        self.relu_dropout_module = FairseqDropout(
            args.relu_dropout, module_name=self.__class__.__name__
        )
        self.input_dropout_module = FairseqDropout(
            args.input_dropout, module_name=self.__class__.__name__
        )
        self.normalize_before = args.encoder_normalize_before
        self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim)
        self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim)
        self.layer_norm1 = LayerNorm(self.embed_dim)
        self.layer_norm2 = LayerNorm(self.embed_dim)

    def forward(self, x, encoder_padding_mask: Optional[Tensor] = None) -> Tensor:
        """
        Args:
            x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_padding_mask (ByteTensor): binary ByteTensor of shape
                `(batch, src_len)` where padding elements are indicated by ``1``.

        Returns:
            encoded output of shape `(batch, src_len, embed_dim)`
        """
        residual = x
        normalize = self.maybe_layer_norm(before=True)
        if normalize:
            x = self.layer_norm1(x)
        x = self.input_dropout_module(x)
        x = self.linear1(x)
        if self.act is not None:
            x = self.act(x)
        if encoder_padding_mask is not None:
            x = x.masked_fill(encoder_padding_mask.transpose(0, 1).unsqueeze(2), 0)
        x = self.conv(x)
        x = self.linear2(x)
        x = self.dropout_module(x)
        x = residual + x
        normalize = self.maybe_layer_norm(after=True)
        if normalize:
            x = self.layer_norm1(x)

        residual = x
        normalize = self.maybe_layer_norm(before=True)
        if normalize:
            x = self.layer_norm2(x)
        x = F.relu(self.fc1(x))
        x = self.relu_dropout_module(x)
        x = self.fc2(x)
        x = self.dropout_module(x)
        x = residual + x
        normalize = self.maybe_layer_norm(after=True)
        if normalize:
            x = self.layer_norm2(x)
        return x

    def maybe_layer_norm(self, before: bool = False, after: bool = False):
        assert before ^ after, "Incorrect arguments"
        return after ^ self.normalize_before

    def extra_repr(self):
        return (
            "dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format(
                self.dropout_module.p,
                self.relu_dropout_module.p,
                self.input_dropout_module.p,
                self.normalize_before,
            )
        )


class LightConvDecoderLayer(nn.Module):
    """Decoder layer block.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        no_encoder_attn (bool, optional): whether to attend to encoder outputs.
            Default: ``False``
        kernel_size: kernel size of the convolution
    """

    def __init__(self, args, no_encoder_attn=False, kernel_size=0, dictionary=None):
        super().__init__()
        self.embed_dim = args.decoder_embed_dim
        self.conv_dim = args.decoder_conv_dim
        if args.decoder_glu:
            self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim)
            self.act = nn.GLU()
        else:
            self.linear1 = Linear(self.embed_dim, self.conv_dim)
            self.act = None
        if args.decoder_conv_type == "lightweight":
            self.conv = LightweightConv(
                self.conv_dim,
                kernel_size,
                padding_l=kernel_size - 1,
                weight_softmax=args.weight_softmax,
                num_heads=args.decoder_attention_heads,
                weight_dropout=args.weight_dropout,
            )
        elif args.decoder_conv_type == "dynamic":
            self.conv = DynamicConv(
                self.conv_dim,
                kernel_size,
                padding_l=kernel_size - 1,
                weight_softmax=args.weight_softmax,
                num_heads=args.decoder_attention_heads,
                weight_dropout=args.weight_dropout,
            )
        else:
            raise NotImplementedError
        self.linear2 = Linear(self.conv_dim, self.embed_dim)

        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__
        )
        self.relu_dropout_module = FairseqDropout(
            args.relu_dropout, module_name=self.__class__.__name__
        )
        self.input_dropout_module = FairseqDropout(
            args.input_dropout, module_name=self.__class__.__name__
        )
        self.normalize_before = args.decoder_normalize_before

        self.conv_layer_norm = LayerNorm(self.embed_dim)

        if no_encoder_attn:
            self.encoder_attn = None
            self.encoder_attn_layer_norm = None
        else:
            self.encoder_attn = MultiheadAttention(
                self.embed_dim,
                args.decoder_attention_heads,
                dropout=args.attention_dropout,
                encoder_decoder_attention=True,
                dictionary=dictionary,
            )
            self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)

        self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim)
        self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim)

        self.final_layer_norm = LayerNorm(self.embed_dim)
        self.need_attn = True

    def forward(
        self,
        x: Tensor,
        encoder_out: Optional[Tensor],
        encoder_padding_mask: Optional[Tensor],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
        prev_conv_state: Optional[Tensor] = None,
        prev_attn_state: Optional[Tuple[Tensor, Tensor]] = None,
        conv_mask: Optional[Tensor] = None,
        conv_padding_mask: Optional[Tensor] = None,
    ):
        """
        Args:
            x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_padding_mask (ByteTensor): binary ByteTensor of shape
                `(batch, src_len)` where padding elements are indicated by ``1``.

        Returns:
            encoded output of shape `(batch, src_len, embed_dim)`
        """
        residual = x
        normalize = self.maybe_layer_norm(before=True)
        if normalize:
            x = self.conv_layer_norm(x)
        if prev_conv_state is not None:
            self.conv._set_input_buffer(incremental_state, prev_conv_state)
        x = self.input_dropout_module(x)
        x = self.linear1(x)
        if self.act is not None:
            x = self.act(x)
        x = self.conv(x, incremental_state=incremental_state)
        x = self.linear2(x)
        x = self.dropout_module(x)
        x = residual + x
        normalize = self.maybe_layer_norm(after=True)
        if normalize:
            x = self.conv_layer_norm(x)

        attn: Optional[Tensor] = None
        if self.encoder_attn is not None:
            residual = x
            normalize = self.maybe_layer_norm(before=True)
            if normalize:
                x = self.encoder_attn_layer_norm(x)

            if prev_attn_state is not None:
                saved_state: Dict[str, Optional[Tensor]] = {
                    "prev_key": prev_attn_state[0],
                    "prev_value": prev_attn_state[1],
                }
                self.encoder_attn._set_input_buffer(incremental_state, saved_state)
            x, attn = self.encoder_attn(
                query=x,
                key=encoder_out,
                value=encoder_out,
                key_padding_mask=encoder_padding_mask,
                incremental_state=incremental_state,
                static_kv=True,
                need_weights=(not self.training and self.need_attn),
            )
            x = self.dropout_module(x)
            x = residual + x
            normalize = self.maybe_layer_norm(after=True)
            if normalize:
                x = self.encoder_attn_layer_norm(x)

        residual = x
        normalize = self.maybe_layer_norm(before=True)
        if normalize:
            x = self.final_layer_norm(x)
        x = F.relu(self.fc1(x))
        x = self.relu_dropout_module(x)
        x = self.fc2(x)
        x = self.dropout_module(x)
        x = residual + x
        normalize = self.maybe_layer_norm(after=True)
        if normalize:
            x = self.final_layer_norm(x)
        return x, attn

    def maybe_layer_norm(self, before: bool = False, after: bool = False):
        assert before ^ after, "Incorrect usage"
        return after ^ self.normalize_before

    def make_generation_fast_(self, need_attn: bool = False, **kwargs):
        self.need_attn = need_attn

    def extra_repr(self):
        return (
            "dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format(
                self.dropout_module.p,
                self.relu_dropout_module.p,
                self.input_dropout_module.p,
                self.normalize_before,
            )
        )


def Embedding(num_embeddings, embedding_dim, padding_idx):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5)
    nn.init.constant_(m.weight[padding_idx], 0)
    return m


def Linear(in_features, out_features, bias=True):
    m = nn.Linear(in_features, out_features, bias)
    nn.init.xavier_uniform_(m.weight)
    if bias:
        nn.init.constant_(m.bias, 0.0)
    return m


@register_model_architecture("lightconv", "lightconv")
def base_architecture(args):
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 7)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.relu_dropout = getattr(args, "relu_dropout", 0.0)
    args.dropout = getattr(args, "dropout", 0.1)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    args.encoder_conv_dim = getattr(args, "encoder_conv_dim", args.encoder_embed_dim)
    args.decoder_conv_dim = getattr(args, "decoder_conv_dim", args.decoder_embed_dim)

    args.encoder_kernel_size_list = getattr(
        args, "encoder_kernel_size_list", [3, 7, 15, 31, 31, 31, 31]
    )
    args.decoder_kernel_size_list = getattr(
        args, "decoder_kernel_size_list", [3, 7, 15, 31, 31, 31]
    )
    if len(args.encoder_kernel_size_list) == 1:
        args.encoder_kernel_size_list = (
            args.encoder_kernel_size_list * args.encoder_layers
        )
    if len(args.decoder_kernel_size_list) == 1:
        args.decoder_kernel_size_list = (
            args.decoder_kernel_size_list * args.decoder_layers
        )
    assert (
        len(args.encoder_kernel_size_list) == args.encoder_layers
    ), "encoder_kernel_size_list doesn't match encoder_layers"
    assert (
        len(args.decoder_kernel_size_list) == args.decoder_layers
    ), "decoder_kernel_size_list doesn't match decoder_layers"
    args.encoder_glu = getattr(args, "encoder_glu", True)
    args.decoder_glu = getattr(args, "decoder_glu", True)
    args.input_dropout = getattr(args, "input_dropout", 0.1)
    args.weight_dropout = getattr(args, "weight_dropout", args.attention_dropout)


@register_model_architecture("lightconv", "lightconv_iwslt_de_en")
def lightconv_iwslt_de_en(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
    args.encoder_layers = getattr(args, "encoder_layers", 7)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.weight_dropout = getattr(args, "weight_dropout", 0.1)
    args.encoder_glu = getattr(args, "encoder_glu", False)
    args.decoder_glu = getattr(args, "decoder_glu", False)
    args.input_dropout = getattr(args, "input_dropout", 0.0)
    base_architecture(args)


@register_model_architecture("lightconv", "lightconv_wmt_en_de")
def lightconv_wmt_en_de(args):
    base_architecture(args)


@register_model_architecture("lightconv", "lightconv_wmt_en_de_big")
def lightconv_wmt_en_de_big(args):
    args.attention_dropout = getattr(args, "attention_dropout", 0.1)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
    args.dropout = getattr(args, "dropout", 0.3)
    base_architecture(args)


@register_model_architecture("lightconv", "lightconv_wmt_en_fr_big")
def lightconv_wmt_en_fr_big(args):
    args.dropout = getattr(args, "dropout", 0.1)
    lightconv_wmt_en_de_big(args)


@register_model_architecture("lightconv", "lightconv_wmt_zh_en_big")
def lightconv_wmt_zh_en_big(args):
    args.dropout = getattr(args, "dropout", 0.2)
    args.attention_dropout = getattr(args, "attention_dropout", 0.2)
    args.weight_dropout = getattr(args, "weight_dropout", 0.2)
    lightconv_wmt_en_de_big(args)