File size: 5,555 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
from fairseq.models.transformer import (
    TransformerDecoder,
    TransformerEncoder,
    TransformerModel,
)
from fairseq.modules.transformer_sentence_encoder import init_bert_params


def ensemble_encoder(func):
    def wrapper(self, *args, **kwargs):
        if self.ensemble_models is None or len(self.ensemble_models) == 1:
            return func(self, *args, **kwargs)
        encoder_outs = [
            func(model, *args, **kwargs, return_all_hiddens=True)
            for model in self.ensemble_models
        ]
        _encoder_out = encoder_outs[0].copy()

        def stack(key):
            outs = [e[key][0] for e in encoder_outs]
            return [torch.stack(outs, -1) if outs[0] is not None else None]

        _encoder_out["encoder_out"] = stack("encoder_out")
        _encoder_out["encoder_embedding"] = stack("encoder_embedding")

        num_layers = len(_encoder_out["encoder_states"])
        if num_layers > 0:
            _encoder_out["encoder_states"] = [
                torch.stack([e["encoder_states"][i] for e in encoder_outs], -1)
                for i in range(num_layers)
            ]
        return _encoder_out

    return wrapper


def ensemble_decoder(func):
    def wrapper(self, normalize=False, encoder_out=None, *args, **kwargs):
        if self.ensemble_models is None or len(self.ensemble_models) == 1:
            return func(
                self, normalize=normalize, encoder_out=encoder_out, *args, **kwargs
            )

        def _replace(encoder_out, new_val):
            new_encoder_out = encoder_out.copy()
            new_encoder_out["encoder_out"] = [new_val]
            return new_encoder_out

        action_outs = [
            func(
                model,
                normalize=normalize,
                encoder_out=_replace(
                    encoder_out, encoder_out["encoder_out"][0][:, :, :, i]
                ),
                *args,
                **kwargs
            )
            for i, model in enumerate(self.ensemble_models)
        ]

        if not isinstance(action_outs[0], tuple):  # return multiple values
            action_outs = [[a] for a in action_outs]
        else:
            action_outs = [list(a) for a in action_outs]

        ensembled_outs = []
        for i in range(len(action_outs[0])):
            if i == 0 and normalize:
                ensembled_outs += [
                    torch.logsumexp(
                        torch.stack([a[i] for a in action_outs], -1), dim=-1
                    )
                    - math.log(len(self.ensemble_models))
                ]
            elif action_outs[0][i] is not None:
                ensembled_outs += [torch.stack([a[i] for a in action_outs], -1)]
            else:
                ensembled_outs += [None]

        if len(ensembled_outs) == 1:
            return ensembled_outs[0]
        return tuple(ensembled_outs)

    return wrapper


class FairseqNATModel(TransformerModel):
    """
    Abstract class for all nonautoregressive-based models
    """

    def __init__(self, args, encoder, decoder):
        super().__init__(args, encoder, decoder)
        self.tgt_dict = decoder.dictionary
        self.bos = decoder.dictionary.bos()
        self.eos = decoder.dictionary.eos()
        self.pad = decoder.dictionary.pad()
        self.unk = decoder.dictionary.unk()

        self.ensemble_models = None

    @property
    def allow_length_beam(self):
        return False

    @property
    def allow_ensemble(self):
        return True

    def enable_ensemble(self, models):
        self.encoder.ensemble_models = [m.encoder for m in models]
        self.decoder.ensemble_models = [m.decoder for m in models]

    @staticmethod
    def add_args(parser):
        TransformerModel.add_args(parser)
        parser.add_argument(
            "--apply-bert-init",
            action="store_true",
            help="use custom param initialization for BERT",
        )

    @classmethod
    def build_decoder(cls, args, tgt_dict, embed_tokens):
        decoder = FairseqNATDecoder(args, tgt_dict, embed_tokens)
        if getattr(args, "apply_bert_init", False):
            decoder.apply(init_bert_params)
        return decoder

    @classmethod
    def build_encoder(cls, args, src_dict, embed_tokens):
        encoder = FairseqNATEncoder(args, src_dict, embed_tokens)
        if getattr(args, "apply_bert_init", False):
            encoder.apply(init_bert_params)
        return encoder

    def forward_encoder(self, encoder_inputs):
        return self.encoder(*encoder_inputs)

    def forward_decoder(self, *args, **kwargs):
        return NotImplementedError

    def initialize_output_tokens(self, *args, **kwargs):
        return NotImplementedError

    def forward(self, *args, **kwargs):
        return NotImplementedError


class FairseqNATEncoder(TransformerEncoder):
    def __init__(self, args, dictionary, embed_tokens):
        super().__init__(args, dictionary, embed_tokens)
        self.ensemble_models = None

    @ensemble_encoder
    def forward(self, *args, **kwargs):
        return super().forward(*args, **kwargs)


class FairseqNATDecoder(TransformerDecoder):
    def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
        super().__init__(args, dictionary, embed_tokens, no_encoder_attn)
        self.ensemble_models = None