File size: 3,637 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from argparse import Namespace
import torch
import torch.nn as nn

from fairseq.models.text_to_speech.fastspeech2 import VariancePredictor
from fairseq.models.text_to_speech.hifigan import Generator


class CodeGenerator(Generator):
    def __init__(self, cfg):
        super().__init__(cfg)
        self.dict = nn.Embedding(cfg["num_embeddings"], cfg["embedding_dim"])
        self.multispkr = cfg.get("multispkr", None)
        self.embedder = cfg.get("embedder_params", None)

        if self.multispkr and not self.embedder:
            self.spkr = nn.Embedding(cfg.get("num_speakers", 200), cfg["embedding_dim"])
        elif self.embedder:
            self.spkr = nn.Linear(cfg.get("embedder_dim", 256), cfg["embedding_dim"])

        self.dur_predictor = None
        if cfg.get("dur_predictor_params", None):
            self.dur_predictor = VariancePredictor(
                Namespace(**cfg["dur_predictor_params"])
            )

        self.f0 = cfg.get("f0", None)
        n_f0_bin = cfg.get("f0_quant_num_bin", 0)
        self.f0_quant_embed = (
            None if n_f0_bin <= 0 else nn.Embedding(n_f0_bin, cfg["embedding_dim"])
        )

    @staticmethod
    def _upsample(signal, max_frames):
        if signal.dim() == 3:
            bsz, channels, cond_length = signal.size()
        elif signal.dim() == 2:
            signal = signal.unsqueeze(2)
            bsz, channels, cond_length = signal.size()
        else:
            signal = signal.view(-1, 1, 1)
            bsz, channels, cond_length = signal.size()

        signal = signal.unsqueeze(3).repeat(1, 1, 1, max_frames // cond_length)

        # pad zeros as needed (if signal's shape does not divide completely with max_frames)
        reminder = (max_frames - signal.shape[2] * signal.shape[3]) // signal.shape[3]
        if reminder > 0:
            raise NotImplementedError(
                "Padding condition signal - misalignment between condition features."
            )

        signal = signal.view(bsz, channels, max_frames)
        return signal

    def forward(self, **kwargs):
        x = self.dict(kwargs["code"]).transpose(1, 2)

        if self.dur_predictor and kwargs.get("dur_prediction", False):
            assert x.size(0) == 1, "only support single sample"
            log_dur_pred = self.dur_predictor(x.transpose(1, 2))
            dur_out = torch.clamp(
                torch.round((torch.exp(log_dur_pred) - 1)).long(), min=1
            )
            # B x C x T
            x = torch.repeat_interleave(x, dur_out.view(-1), dim=2)

        if self.f0:
            if self.f0_quant_embed:
                kwargs["f0"] = self.f0_quant_embed(kwargs["f0"].long()).transpose(1, 2)
            else:
                kwargs["f0"] = kwargs["f0"].unsqueeze(1)

            if x.shape[-1] < kwargs["f0"].shape[-1]:
                x = self._upsample(x, kwargs["f0"].shape[-1])
            elif x.shape[-1] > kwargs["f0"].shape[-1]:
                kwargs["f0"] = self._upsample(kwargs["f0"], x.shape[-1])
            x = torch.cat([x, kwargs["f0"]], dim=1)

        if self.multispkr:
            assert (
                "spkr" in kwargs
            ), 'require "spkr" input for multispeaker CodeHiFiGAN vocoder'
            spkr = self.spkr(kwargs["spkr"]).transpose(1, 2)
            spkr = self._upsample(spkr, x.shape[-1])
            x = torch.cat([x, spkr], dim=1)

        for k, feat in kwargs.items():
            if k in ["spkr", "code", "f0", "dur_prediction"]:
                continue

            feat = self._upsample(feat, x.shape[-1])
            x = torch.cat([x, feat], dim=1)

        return super().forward(x)