File size: 40,717 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
import sys
from typing import Dict, List, Optional

import torch
import torch.nn as nn
from torch import Tensor

from fairseq import search, utils
from fairseq.data import data_utils
from fairseq.models import FairseqIncrementalDecoder
from fairseq.ngram_repeat_block import NGramRepeatBlock


class SequenceGenerator(nn.Module):
    def __init__(
        self,
        models,
        tgt_dict,
        beam_size=1,
        max_len_a=0,
        max_len_b=200,
        max_len=0,
        min_len=1,
        normalize_scores=True,
        len_penalty=1.0,
        unk_penalty=0.0,
        temperature=1.0,
        match_source_len=False,
        no_repeat_ngram_size=0,
        search_strategy=None,
        eos=None,
        symbols_to_strip_from_output=None,
        lm_model=None,
        lm_weight=1.0,
        tokens_to_suppress=(),
    ):
        """Generates translations of a given source sentence.

        Args:
            models (List[~fairseq.models.FairseqModel]): ensemble of models,
                currently support fairseq.models.TransformerModel for scripting
            beam_size (int, optional): beam width (default: 1)
            max_len_a/b (int, optional): generate sequences of maximum length
                ax + b, where x is the source length
            max_len (int, optional): the maximum length of the generated output
                (not including end-of-sentence)
            min_len (int, optional): the minimum length of the generated output
                (not including end-of-sentence)
            normalize_scores (bool, optional): normalize scores by the length
                of the output (default: True)
            len_penalty (float, optional): length penalty, where <1.0 favors
                shorter, >1.0 favors longer sentences (default: 1.0)
            unk_penalty (float, optional): unknown word penalty, where <0
                produces more unks, >0 produces fewer (default: 0.0)
            temperature (float, optional): temperature, where values
                >1.0 produce more uniform samples and values <1.0 produce
                sharper samples (default: 1.0)
            match_source_len (bool, optional): outputs should match the source
                length (default: False)
        """
        super().__init__()
        if isinstance(models, EnsembleModel):
            self.model = models
        else:
            self.model = EnsembleModel(models)
        self.tgt_dict = tgt_dict
        self.pad = tgt_dict.pad()
        self.unk = tgt_dict.unk()
        self.eos = tgt_dict.eos() if eos is None else eos
        self.symbols_to_strip_from_output = (
            symbols_to_strip_from_output.union({self.eos})
            if symbols_to_strip_from_output is not None
            else {self.eos}
        )

        self.token_indices_to_suppress: Optional[Tensor] = None
        token_indices_to_suppress = []
        for token_string in tokens_to_suppress:
            token_index = tgt_dict.index(token_string)
            assert token_index != self.unk
            token_indices_to_suppress.append(token_index)
        if len(token_indices_to_suppress) > 0:
            self.token_indices_to_suppress = torch.Tensor(
                token_indices_to_suppress
            ).long()

        self.vocab_size = len(tgt_dict)
        self.beam_size = beam_size
        # the max beam size is the dictionary size - 1, since we never select pad
        self.beam_size = min(beam_size, self.vocab_size - 1)
        self.model.set_decoder_beam_size(self.beam_size)
        self.max_len_a = max_len_a
        self.max_len_b = max_len_b
        self.min_len = min_len
        self.max_len = max_len or self.model.max_decoder_positions()

        self.normalize_scores = normalize_scores
        self.len_penalty = len_penalty
        self.unk_penalty = unk_penalty
        self.temperature = temperature
        self.match_source_len = match_source_len

        if no_repeat_ngram_size > 0:
            self.repeat_ngram_blocker = NGramRepeatBlock(no_repeat_ngram_size)
        else:
            self.repeat_ngram_blocker = None

        assert temperature > 0, "--temperature must be greater than 0"

        self.search = (
            search.BeamSearch(tgt_dict) if search_strategy is None else search_strategy
        )
        # We only need to set src_lengths in LengthConstrainedBeamSearch.
        # As a module attribute, setting it would break in multithread
        # settings when the model is shared.
        self.should_set_src_lengths = (
            hasattr(self.search, "needs_src_lengths") and self.search.needs_src_lengths
        )

        self.model.eval()

        self.lm_model = lm_model
        self.lm_weight = lm_weight
        if self.lm_model is not None:
            self.lm_model.eval()

    def cuda(self):
        self.model.cuda()
        return self

    @torch.no_grad()
    def forward(
        self,
        sample: Dict[str, Dict[str, Tensor]],
        prefix_tokens: Optional[Tensor] = None,
        bos_token: Optional[int] = None,
    ):
        """Generate a batch of translations.

        Args:
            sample (dict): batch
            prefix_tokens (torch.LongTensor, optional): force decoder to begin
                with these tokens
            bos_token (int, optional): beginning of sentence token
                (default: self.eos)
        """
        return self._generate(sample, prefix_tokens, bos_token=bos_token)

    # TODO(myleott): unused, deprecate after pytorch-translate migration
    def generate_batched_itr(self, data_itr, beam_size=None, cuda=False, timer=None):
        """Iterate over a batched dataset and yield individual translations.
        Args:
            cuda (bool, optional): use GPU for generation
            timer (StopwatchMeter, optional): time generations
        """
        for sample in data_itr:
            s = utils.move_to_cuda(sample) if cuda else sample
            if "net_input" not in s:
                continue
            input = s["net_input"]
            # model.forward normally channels prev_output_tokens into the decoder
            # separately, but SequenceGenerator directly calls model.encoder
            encoder_input = {
                k: v for k, v in input.items() if k != "prev_output_tokens"
            }
            if timer is not None:
                timer.start()
            with torch.no_grad():
                hypos = self.generate(encoder_input)
            if timer is not None:
                timer.stop(sum(len(h[0]["tokens"]) for h in hypos))
            for i, id in enumerate(s["id"].data):
                # remove padding
                src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad)
                ref = (
                    utils.strip_pad(s["target"].data[i, :], self.pad)
                    if s["target"] is not None
                    else None
                )
                yield id, src, ref, hypos[i]

    @torch.no_grad()
    def generate(
        self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs
    ) -> List[List[Dict[str, Tensor]]]:
        """Generate translations. Match the api of other fairseq generators.

        Args:
            models (List[~fairseq.models.FairseqModel]): ensemble of models
            sample (dict): batch
            prefix_tokens (torch.LongTensor, optional): force decoder to begin
                with these tokens
            constraints (torch.LongTensor, optional): force decoder to include
                the list of constraints
            bos_token (int, optional): beginning of sentence token
                (default: self.eos)
        """
        return self._generate(sample, **kwargs)

    def _generate(
        self,
        sample: Dict[str, Dict[str, Tensor]],
        prefix_tokens: Optional[Tensor] = None,
        constraints: Optional[Tensor] = None,
        bos_token: Optional[int] = None,
    ):
        incremental_states = torch.jit.annotate(
            List[Dict[str, Dict[str, Optional[Tensor]]]],
            [
                torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
                for i in range(self.model.models_size)
            ],
        )
        net_input = sample["net_input"]

        if "src_tokens" in net_input:
            src_tokens = net_input["src_tokens"]
            # length of the source text being the character length except EndOfSentence and pad
            # if src_lengths exists in net_input (speech_to_text dataset case), then use it
            if "src_lengths" in net_input:
                src_lengths = net_input["src_lengths"]
            else:
                src_lengths = (
                    (src_tokens.ne(self.eos) & src_tokens.ne(self.pad))
                    .long()
                    .sum(dim=1)
                )
        elif "source" in net_input:
            src_tokens = net_input["source"]
            src_lengths = (
                net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1)
                if net_input["padding_mask"] is not None
                else torch.tensor(src_tokens.size(-1)).to(src_tokens)
            )
        elif "features" in net_input:
            src_tokens = net_input["features"]
            src_lengths = (
                net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1)
                if net_input["padding_mask"] is not None
                else torch.tensor(src_tokens.size(-1)).to(src_tokens)
            )
        else:
            raise Exception(
                "expected src_tokens or source in net input. input keys: "
                + str(net_input.keys())
            )

        # bsz: total number of sentences in beam
        # Note that src_tokens may have more than 2 dimensions (i.e. audio features)
        bsz, src_len = src_tokens.size()[:2]
        beam_size = self.beam_size

        if constraints is not None and not self.search.supports_constraints:
            raise NotImplementedError(
                "Target-side constraints were provided, but search method doesn't support them"
            )

        # Initialize constraints, when active
        self.search.init_constraints(constraints, beam_size)

        max_len: int = -1
        if self.match_source_len:
            max_len = src_lengths.max().item()
        else:
            max_len = min(
                int(self.max_len_a * src_len + self.max_len_b),
                self.max_len - 1,
            )
        assert (
            self.min_len <= max_len
        ), "min_len cannot be larger than max_len, please adjust these!"
        # compute the encoder output for each beam
        with torch.autograd.profiler.record_function("EnsembleModel: forward_encoder"):
            encoder_outs = self.model.forward_encoder(net_input)

        # placeholder of indices for bsz * beam_size to hold tokens and accumulative scores
        new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1)
        new_order = new_order.to(src_tokens.device).long()
        encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order)
        # ensure encoder_outs is a List.
        assert encoder_outs is not None

        # initialize buffers
        scores = (
            torch.zeros(bsz * beam_size, max_len + 1).to(src_tokens).float()
        )  # +1 for eos; pad is never chosen for scoring
        tokens = (
            torch.zeros(bsz * beam_size, max_len + 2)
            .to(src_tokens)
            .long()
            .fill_(self.pad)
        )  # +2 for eos and pad
        tokens[:, 0] = self.eos if bos_token is None else bos_token
        attn: Optional[Tensor] = None

        # A list that indicates candidates that should be ignored.
        # For example, suppose we're sampling and have already finalized 2/5
        # samples. Then cands_to_ignore would mark 2 positions as being ignored,
        # so that we only finalize the remaining 3 samples.
        cands_to_ignore = (
            torch.zeros(bsz, beam_size).to(src_tokens).eq(-1)
        )  # forward and backward-compatible False mask

        # list of completed sentences
        finalized = torch.jit.annotate(
            List[List[Dict[str, Tensor]]],
            [torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)],
        )  # contains lists of dictionaries of infomation about the hypothesis being finalized at each step

        # a boolean array indicating if the sentence at the index is finished or not
        finished = [False for i in range(bsz)]
        num_remaining_sent = bsz  # number of sentences remaining

        # number of candidate hypos per step
        cand_size = 2 * beam_size  # 2 x beam size in case half are EOS

        # offset arrays for converting between different indexing schemes
        bbsz_offsets = (
            (torch.arange(0, bsz) * beam_size)
            .unsqueeze(1)
            .type_as(tokens)
            .to(src_tokens.device)
        )
        cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device)

        reorder_state: Optional[Tensor] = None
        batch_idxs: Optional[Tensor] = None

        original_batch_idxs: Optional[Tensor] = None
        if "id" in sample and isinstance(sample["id"], Tensor):
            original_batch_idxs = sample["id"]
        else:
            original_batch_idxs = torch.arange(0, bsz).type_as(tokens)

        for step in range(max_len + 1):  # one extra step for EOS marker
            # reorder decoder internal states based on the prev choice of beams
            if reorder_state is not None:
                if batch_idxs is not None:
                    # update beam indices to take into account removed sentences
                    corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(
                        batch_idxs
                    )
                    reorder_state.view(-1, beam_size).add_(
                        corr.unsqueeze(-1) * beam_size
                    )
                    original_batch_idxs = original_batch_idxs[batch_idxs]
                self.model.reorder_incremental_state(incremental_states, reorder_state)
                encoder_outs = self.model.reorder_encoder_out(
                    encoder_outs, reorder_state
                )
            with torch.autograd.profiler.record_function(
                "EnsembleModel: forward_decoder"
            ):
                lprobs, avg_attn_scores = self.model.forward_decoder(
                    tokens[:, : step + 1],
                    encoder_outs,
                    incremental_states,
                    self.temperature,
                )

            if self.lm_model is not None:
                lm_out = self.lm_model(tokens[:, : step + 1])
                probs = self.lm_model.get_normalized_probs(
                    lm_out, log_probs=True, sample=None
                )
                probs = probs[:, -1, :] * self.lm_weight
                lprobs += probs

            lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs)

            lprobs[:, self.pad] = -math.inf  # never select pad
            lprobs[:, self.unk] -= self.unk_penalty  # apply unk penalty

            # handle max length constraint
            if step >= max_len:
                lprobs[:, : self.eos] = -math.inf
                lprobs[:, self.eos + 1 :] = -math.inf

            # handle prefix tokens (possibly with different lengths)
            if (
                prefix_tokens is not None
                and step < prefix_tokens.size(1)
                and step < max_len
            ):
                lprobs, tokens, scores = self._prefix_tokens(
                    step, lprobs, scores, tokens, prefix_tokens, beam_size
                )
            else:
                if step < self.min_len:
                    # minimum length constraint (does not apply if using prefix_tokens)
                    lprobs[:, self.eos] = -math.inf

                if self.token_indices_to_suppress is not None:
                    lprobs[:, self.token_indices_to_suppress] = -math.inf

            # Record attention scores, only support avg_attn_scores is a Tensor
            if avg_attn_scores is not None:
                if attn is None:
                    attn = torch.empty(
                        bsz * beam_size, avg_attn_scores.size(1), max_len + 2
                    ).to(scores)
                attn[:, :, step + 1].copy_(avg_attn_scores)

            scores = scores.type_as(lprobs)
            eos_bbsz_idx = torch.empty(0).to(
                tokens
            )  # indices of hypothesis ending with eos (finished sentences)
            eos_scores = torch.empty(0).to(
                scores
            )  # scores of hypothesis ending with eos (finished sentences)

            if self.should_set_src_lengths:
                self.search.set_src_lengths(src_lengths)

            if self.repeat_ngram_blocker is not None:
                lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step)

            # Shape: (batch, cand_size)
            cand_scores, cand_indices, cand_beams = self.search.step(
                step,
                lprobs.view(bsz, -1, self.vocab_size),
                scores.view(bsz, beam_size, -1)[:, :, :step],
                tokens[:, : step + 1],
                original_batch_idxs,
            )

            # cand_bbsz_idx contains beam indices for the top candidate
            # hypotheses, with a range of values: [0, bsz*beam_size),
            # and dimensions: [bsz, cand_size]
            cand_bbsz_idx = cand_beams.add(bbsz_offsets)

            # finalize hypotheses that end in eos
            # Shape of eos_mask: (batch size, beam size)
            eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf)
            eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask)

            # only consider eos when it's among the top beam_size indices
            # Now we know what beam item(s) to finish
            # Shape: 1d list of absolute-numbered
            eos_bbsz_idx = torch.masked_select(
                cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size]
            )

            finalized_sents: List[int] = []
            if eos_bbsz_idx.numel() > 0:
                eos_scores = torch.masked_select(
                    cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size]
                )

                finalized_sents = self.finalize_hypos(
                    step,
                    eos_bbsz_idx,
                    eos_scores,
                    tokens,
                    scores,
                    finalized,
                    finished,
                    beam_size,
                    attn,
                    src_lengths,
                    max_len,
                )
                num_remaining_sent -= len(finalized_sents)

            assert num_remaining_sent >= 0
            if num_remaining_sent == 0:
                break
            if self.search.stop_on_max_len and step >= max_len:
                break
            assert step < max_len, f"{step} < {max_len}"

            # Remove finalized sentences (ones for which {beam_size}
            # finished hypotheses have been generated) from the batch.
            if len(finalized_sents) > 0:
                new_bsz = bsz - len(finalized_sents)

                # construct batch_idxs which holds indices of batches to keep for the next pass
                batch_mask = torch.ones(
                    bsz, dtype=torch.bool, device=cand_indices.device
                )
                batch_mask[finalized_sents] = False
                # TODO replace `nonzero(as_tuple=False)` after TorchScript supports it
                batch_idxs = torch.arange(
                    bsz, device=cand_indices.device
                ).masked_select(batch_mask)

                # Choose the subset of the hypothesized constraints that will continue
                self.search.prune_sentences(batch_idxs)

                eos_mask = eos_mask[batch_idxs]
                cand_beams = cand_beams[batch_idxs]
                bbsz_offsets.resize_(new_bsz, 1)
                cand_bbsz_idx = cand_beams.add(bbsz_offsets)
                cand_scores = cand_scores[batch_idxs]
                cand_indices = cand_indices[batch_idxs]

                if prefix_tokens is not None:
                    prefix_tokens = prefix_tokens[batch_idxs]
                src_lengths = src_lengths[batch_idxs]
                cands_to_ignore = cands_to_ignore[batch_idxs]

                scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
                tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
                if attn is not None:
                    attn = attn.view(bsz, -1)[batch_idxs].view(
                        new_bsz * beam_size, attn.size(1), -1
                    )
                bsz = new_bsz
            else:
                batch_idxs = None

            # Set active_mask so that values > cand_size indicate eos hypos
            # and values < cand_size indicate candidate active hypos.
            # After, the min values per row are the top candidate active hypos

            # Rewrite the operator since the element wise or is not supported in torchscript.

            eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size]))
            active_mask = torch.add(
                eos_mask.type_as(cand_offsets) * cand_size,
                cand_offsets[: eos_mask.size(1)],
            )

            # get the top beam_size active hypotheses, which are just
            # the hypos with the smallest values in active_mask.
            # {active_hypos} indicates which {beam_size} hypotheses
            # from the list of {2 * beam_size} candidates were
            # selected. Shapes: (batch size, beam size)
            new_cands_to_ignore, active_hypos = torch.topk(
                active_mask, k=beam_size, dim=1, largest=False
            )

            # update cands_to_ignore to ignore any finalized hypos.
            cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size]
            # Make sure there is at least one active item for each sentence in the batch.
            assert (~cands_to_ignore).any(dim=1).all()

            # update cands_to_ignore to ignore any finalized hypos

            # {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam
            # can be selected more than once).
            active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos)
            active_scores = torch.gather(cand_scores, dim=1, index=active_hypos)

            active_bbsz_idx = active_bbsz_idx.view(-1)
            active_scores = active_scores.view(-1)

            # copy tokens and scores for active hypotheses

            # Set the tokens for each beam (can select the same row more than once)
            tokens[:, : step + 1] = torch.index_select(
                tokens[:, : step + 1], dim=0, index=active_bbsz_idx
            )
            # Select the next token for each of them
            tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather(
                cand_indices, dim=1, index=active_hypos
            )
            if step > 0:
                scores[:, :step] = torch.index_select(
                    scores[:, :step], dim=0, index=active_bbsz_idx
                )
            scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather(
                cand_scores, dim=1, index=active_hypos
            )

            # Update constraints based on which candidates were selected for the next beam
            self.search.update_constraints(active_hypos)

            # copy attention for active hypotheses
            if attn is not None:
                attn[:, :, : step + 2] = torch.index_select(
                    attn[:, :, : step + 2], dim=0, index=active_bbsz_idx
                )

            # reorder incremental state in decoder
            reorder_state = active_bbsz_idx

        # sort by score descending
        for sent in range(len(finalized)):
            scores = torch.tensor(
                [float(elem["score"].item()) for elem in finalized[sent]]
            )
            _, sorted_scores_indices = torch.sort(scores, descending=True)
            finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices]
            finalized[sent] = torch.jit.annotate(
                List[Dict[str, Tensor]], finalized[sent]
            )
        return finalized

    def _prefix_tokens(
        self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int
    ):
        """Handle prefix tokens"""
        prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1)
        prefix_lprobs = lprobs.gather(-1, prefix_toks.unsqueeze(-1))
        prefix_mask = prefix_toks.ne(self.pad)
        lprobs[prefix_mask] = torch.tensor(-math.inf).to(lprobs)
        lprobs[prefix_mask] = lprobs[prefix_mask].scatter(
            -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lprobs[prefix_mask]
        )
        # if prefix includes eos, then we should make sure tokens and
        # scores are the same across all beams
        eos_mask = prefix_toks.eq(self.eos)
        if eos_mask.any():
            # validate that the first beam matches the prefix
            first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[
                :, 0, 1 : step + 1
            ]
            eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0]
            target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step]
            assert (first_beam == target_prefix).all()

            # copy tokens, scores and lprobs from the first beam to all beams
            tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size)
            scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size)
            lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size)
        return lprobs, tokens, scores

    def replicate_first_beam(self, tensor, mask, beam_size: int):
        tensor = tensor.view(-1, beam_size, tensor.size(-1))
        tensor[mask] = tensor[mask][:, :1, :]
        return tensor.view(-1, tensor.size(-1))

    def finalize_hypos(
        self,
        step: int,
        bbsz_idx,
        eos_scores,
        tokens,
        scores,
        finalized: List[List[Dict[str, Tensor]]],
        finished: List[bool],
        beam_size: int,
        attn: Optional[Tensor],
        src_lengths,
        max_len: int,
    ):
        """Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly.
        A sentence is finalized when {beam_size} finished items have been collected for it.

        Returns number of sentences (not beam items) being finalized.
        These will be removed from the batch and not processed further.
        Args:
            bbsz_idx (Tensor):
        """
        assert bbsz_idx.numel() == eos_scores.numel()

        # clone relevant token and attention tensors.
        # tokens is (batch * beam, max_len). So the index_select
        # gets the newly EOS rows, then selects cols 1..{step + 2}
        tokens_clone = tokens.index_select(0, bbsz_idx)[
            :, 1 : step + 2
        ]  # skip the first index, which is EOS

        tokens_clone[:, step] = self.eos
        attn_clone = (
            attn.index_select(0, bbsz_idx)[:, :, 1 : step + 2]
            if attn is not None
            else None
        )

        # compute scores per token position
        pos_scores = scores.index_select(0, bbsz_idx)[:, : step + 1]
        pos_scores[:, step] = eos_scores
        # convert from cumulative to per-position scores
        pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1]

        # normalize sentence-level scores
        if self.normalize_scores:
            eos_scores /= (step + 1) ** self.len_penalty

        # cum_unfin records which sentences in the batch are finished.
        # It helps match indexing between (a) the original sentences
        # in the batch and (b) the current, possibly-reduced set of
        # sentences.
        cum_unfin: List[int] = []
        prev = 0
        for f in finished:
            if f:
                prev += 1
            else:
                cum_unfin.append(prev)
        cum_fin_tensor = torch.tensor(cum_unfin, dtype=torch.int).to(bbsz_idx)

        unfin_idx = torch.div(bbsz_idx, beam_size, rounding_mode="trunc")
        sent = unfin_idx + torch.index_select(cum_fin_tensor, 0, unfin_idx)

        # Create a set of "{sent}{unfin_idx}", where
        # "unfin_idx" is the index in the current (possibly reduced)
        # list of sentences, and "sent" is the index in the original,
        # unreduced batch
        # For every finished beam item
        # sentence index in the current (possibly reduced) batch
        seen = (sent << 32) + unfin_idx
        unique_seen: List[int] = torch.unique(seen).tolist()

        if self.match_source_len:
            condition = step > torch.index_select(src_lengths, 0, unfin_idx)
            eos_scores = torch.where(condition, torch.tensor(-math.inf), eos_scores)
        sent_list: List[int] = sent.tolist()
        for i in range(bbsz_idx.size()[0]):
            # An input sentence (among those in a batch) is finished when
            # beam_size hypotheses have been collected for it
            if len(finalized[sent_list[i]]) < beam_size:
                if attn_clone is not None:
                    # remove padding tokens from attn scores
                    hypo_attn = attn_clone[i]
                else:
                    hypo_attn = torch.empty(0)

                finalized[sent_list[i]].append(
                    {
                        "tokens": tokens_clone[i],
                        "score": eos_scores[i],
                        "attention": hypo_attn,  # src_len x tgt_len
                        "alignment": torch.empty(0),
                        "positional_scores": pos_scores[i],
                    }
                )

        newly_finished: List[int] = []
        for unique_s in unique_seen:
            # check termination conditions for this sentence
            unique_sent: int = unique_s >> 32
            unique_unfin_idx: int = unique_s - (unique_sent << 32)

            if not finished[unique_sent] and self.is_finished(
                step, unique_unfin_idx, max_len, len(finalized[unique_sent]), beam_size
            ):
                finished[unique_sent] = True
                newly_finished.append(unique_unfin_idx)

        return newly_finished

    def is_finished(
        self,
        step: int,
        unfin_idx: int,
        max_len: int,
        finalized_sent_len: int,
        beam_size: int,
    ):
        """
        Check whether decoding for a sentence is finished, which
        occurs when the list of finalized sentences has reached the
        beam size, or when we reach the maximum length.
        """
        assert finalized_sent_len <= beam_size
        if finalized_sent_len == beam_size or step == max_len:
            return True
        return False


class EnsembleModel(nn.Module):
    """A wrapper around an ensemble of models."""

    def __init__(self, models):
        super().__init__()
        self.models_size = len(models)
        # method '__len__' is not supported in ModuleList for torch script
        self.single_model = models[0]
        self.models = nn.ModuleList(models)

        self.has_incremental: bool = False
        if all(
            hasattr(m, "decoder") and isinstance(m.decoder, FairseqIncrementalDecoder)
            for m in models
        ):
            self.has_incremental = True

    def forward(self):
        pass

    def has_encoder(self):
        return hasattr(self.single_model, "encoder")

    def has_incremental_states(self):
        return self.has_incremental

    def max_decoder_positions(self):
        return min(
            [
                m.max_decoder_positions()
                for m in self.models
                if hasattr(m, "max_decoder_positions")
            ]
            + [sys.maxsize]
        )

    def set_decoder_beam_size(self, beam_size):
        """Set beam size for efficient beamable enc-dec attention."""
        if beam_size > 1:
            for model in self.models:
                if hasattr(model, "set_beam_size"):
                    model.set_beam_size(beam_size)

    @torch.jit.export
    def forward_encoder(self, net_input: Dict[str, Tensor]):
        if not self.has_encoder():
            return None
        return [model.encoder.forward_torchscript(net_input) for model in self.models]

    @torch.jit.export
    def forward_decoder(
        self,
        tokens,
        encoder_outs: List[Dict[str, List[Tensor]]],
        incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]],
        temperature: float = 1.0,
    ):
        log_probs = []
        avg_attn: Optional[Tensor] = None
        encoder_out: Optional[Dict[str, List[Tensor]]] = None
        for i, model in enumerate(self.models):
            if self.has_encoder():
                encoder_out = encoder_outs[i]
            # decode each model
            if self.has_incremental_states():
                decoder_out = model.decoder.forward(
                    tokens,
                    encoder_out=encoder_out,
                    incremental_state=incremental_states[i],
                )
            else:
                if hasattr(model, "decoder"):
                    decoder_out = model.decoder.forward(tokens, encoder_out=encoder_out)
                else:
                    decoder_out = model.forward(tokens)

            attn: Optional[Tensor] = None
            decoder_len = len(decoder_out)
            if decoder_len > 1 and decoder_out[1] is not None:
                if isinstance(decoder_out[1], Tensor):
                    attn = decoder_out[1]
                else:
                    attn_holder = decoder_out[1]["attn"]
                    if isinstance(attn_holder, Tensor):
                        attn = attn_holder
                    elif attn_holder is not None:
                        attn = attn_holder[0]
                if attn is not None:
                    attn = attn[:, -1, :]

            decoder_out_tuple = (
                decoder_out[0][:, -1:, :].div_(temperature),
                None if decoder_len <= 1 else decoder_out[1],
            )
            probs = model.get_normalized_probs(
                decoder_out_tuple, log_probs=True, sample=None
            )
            probs = probs[:, -1, :]
            if self.models_size == 1:
                return probs, attn

            log_probs.append(probs)
            if attn is not None:
                if avg_attn is None:
                    avg_attn = attn
                else:
                    avg_attn.add_(attn)

        avg_probs = torch.logsumexp(torch.stack(log_probs, dim=0), dim=0) - math.log(
            self.models_size
        )

        if avg_attn is not None:
            avg_attn.div_(self.models_size)
        return avg_probs, avg_attn

    @torch.jit.export
    def reorder_encoder_out(
        self, encoder_outs: Optional[List[Dict[str, List[Tensor]]]], new_order
    ):
        """
        Reorder encoder output according to *new_order*.

        Args:
            encoder_out: output from the ``forward()`` method
            new_order (LongTensor): desired order

        Returns:
            *encoder_out* rearranged according to *new_order*
        """
        new_outs: List[Dict[str, List[Tensor]]] = []
        if not self.has_encoder():
            return new_outs
        for i, model in enumerate(self.models):
            assert encoder_outs is not None
            new_outs.append(
                model.encoder.reorder_encoder_out(encoder_outs[i], new_order)
            )
        return new_outs

    @torch.jit.export
    def reorder_incremental_state(
        self,
        incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]],
        new_order,
    ):
        if not self.has_incremental_states():
            return
        for i, model in enumerate(self.models):
            model.decoder.reorder_incremental_state_scripting(
                incremental_states[i], new_order
            )


class SequenceGeneratorWithAlignment(SequenceGenerator):
    def __init__(
        self, models, tgt_dict, left_pad_target=False, print_alignment="hard", **kwargs
    ):
        """Generates translations of a given source sentence.

        Produces alignments following "Jointly Learning to Align and
        Translate with Transformer Models" (Garg et al., EMNLP 2019).

        Args:
            left_pad_target (bool, optional): Whether or not the
                hypothesis should be left padded or not when they are
                teacher forced for generating alignments.
        """
        super().__init__(EnsembleModelWithAlignment(models), tgt_dict, **kwargs)
        self.left_pad_target = left_pad_target

        if print_alignment == "hard":
            self.extract_alignment = utils.extract_hard_alignment
        elif print_alignment == "soft":
            self.extract_alignment = utils.extract_soft_alignment

    @torch.no_grad()
    def generate(self, models, sample, **kwargs):
        finalized = super()._generate(sample, **kwargs)

        src_tokens = sample["net_input"]["src_tokens"]
        bsz = src_tokens.shape[0]
        beam_size = self.beam_size
        (
            src_tokens,
            src_lengths,
            prev_output_tokens,
            tgt_tokens,
        ) = self._prepare_batch_for_alignment(sample, finalized)
        if any(getattr(m, "full_context_alignment", False) for m in self.model.models):
            attn = self.model.forward_align(src_tokens, src_lengths, prev_output_tokens)
        else:
            attn = [
                finalized[i // beam_size][i % beam_size]["attention"].transpose(1, 0)
                for i in range(bsz * beam_size)
            ]

        if src_tokens.device != "cpu":
            src_tokens = src_tokens.to("cpu")
            tgt_tokens = tgt_tokens.to("cpu")
            attn = [i.to("cpu") for i in attn]

        # Process the attn matrix to extract hard alignments.
        for i in range(bsz * beam_size):
            alignment = self.extract_alignment(
                attn[i], src_tokens[i], tgt_tokens[i], self.pad, self.eos
            )
            finalized[i // beam_size][i % beam_size]["alignment"] = alignment
        return finalized

    def _prepare_batch_for_alignment(self, sample, hypothesis):
        src_tokens = sample["net_input"]["src_tokens"]
        bsz = src_tokens.shape[0]
        src_tokens = (
            src_tokens[:, None, :]
            .expand(-1, self.beam_size, -1)
            .contiguous()
            .view(bsz * self.beam_size, -1)
        )
        src_lengths = sample["net_input"]["src_lengths"]
        src_lengths = (
            src_lengths[:, None]
            .expand(-1, self.beam_size)
            .contiguous()
            .view(bsz * self.beam_size)
        )
        prev_output_tokens = data_utils.collate_tokens(
            [beam["tokens"] for example in hypothesis for beam in example],
            self.pad,
            self.eos,
            self.left_pad_target,
            move_eos_to_beginning=True,
        )
        tgt_tokens = data_utils.collate_tokens(
            [beam["tokens"] for example in hypothesis for beam in example],
            self.pad,
            self.eos,
            self.left_pad_target,
            move_eos_to_beginning=False,
        )
        return src_tokens, src_lengths, prev_output_tokens, tgt_tokens


class EnsembleModelWithAlignment(EnsembleModel):
    """A wrapper around an ensemble of models."""

    def __init__(self, models):
        super().__init__(models)

    def forward_align(self, src_tokens, src_lengths, prev_output_tokens):
        avg_attn = None
        for model in self.models:
            decoder_out = model(src_tokens, src_lengths, prev_output_tokens)
            attn = decoder_out[1]["attn"][0]
            if avg_attn is None:
                avg_attn = attn
            else:
                avg_attn.add_(attn)
        if len(self.models) > 1:
            avg_attn.div_(len(self.models))
        return avg_attn