Spaces:
Running
Running
File size: 13,503 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import logging
import os
import torch
import json
from argparse import Namespace
from dataclasses import dataclass, field
from typing import Optional, Any
from fairseq.data import AddTargetDataset, Dictionary, encoders
from fairseq.tasks.audio_pretraining import AudioPretrainingTask, AudioPretrainingConfig
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.configs import GenerationConfig
from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel
from . import register_task
from .. import utils
from ..logging import metrics
logger = logging.getLogger(__name__)
class LabelEncoder(object):
def __init__(self, dictionary):
self.dictionary = dictionary
def __call__(self, label):
return self.dictionary.encode_line(
label, append_eos=False, add_if_not_exist=False
)
def label_len_fn(label):
return len(label.split(" "))
@dataclass
class AudioFinetuningConfig(AudioPretrainingConfig):
# Options for reporting WER metrics during validation. Only applicable to
# Seq2Seq models during fine-tuning
eval_wer: bool = field(
default=False, metadata={"help": "compute WER for Seq2Seq models"}
)
eval_wer_config: GenerationConfig = field(
default_factory=lambda: GenerationConfig(),
metadata={"help": "beam search config for evaluating wer during training"},
)
eval_wer_tokenizer: Any = field(
default=None,
metadata={"help": "tokenizer config for evaluating wer during training"},
)
eval_wer_post_process: str = field(
default="letter",
metadata={
"help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)"
},
)
eval_bleu: bool = field(
default=False, metadata={"help": "evaluation with BLEU scores"}
)
eval_bleu_detok: Optional[str] = field(
default=None,
metadata={
"help": "detokenize before computing BLEU (e.g., 'moses'); "
"required if using --eval-bleu; use 'space' to disable "
"detokenization; see fairseq.data.encoders for other options"
},
)
eval_bleu_detok_args: str = field(
default="{}", metadata={"help": "args for building the tokenizer, if needed"}
)
eval_tokenized_bleu: bool = field(
default=False, metadata={"help": "compute tokenized BLEU instead of sacrebleu"}
)
eval_bleu_remove_bpe: Optional[str] = field(
default=None, metadata={"help": "remove BPE before computing BLEU"}
)
eval_bleu_args: str = field(
default="{}",
metadata={
"help": "generation args for BLUE scoring, e.g., "
'\'{"beam": 4, "lenpen": 0.6}\''
},
)
eval_bleu_print_samples: bool = field(
default=False, metadata={"help": "print sample generations during validation"}
)
autoregressive: bool = field(
default=False,
metadata={
"help": "required for autoregressive decoders (like seq2seq models); "
"adds 'prev_output_tokens' to input and appends eos to target"
},
)
@register_task("audio_finetuning", dataclass=AudioFinetuningConfig)
class AudioFinetuningTask(AudioPretrainingTask):
""" """
cfg: AudioFinetuningConfig
def __init__(
self,
cfg: AudioFinetuningConfig,
):
super().__init__(cfg)
self.blank_symbol = "<s>"
self.state.add_factory("target_dictionary", self.load_target_dictionary)
def load_target_dictionary(self):
if self.cfg.labels:
dict_path = os.path.join(self.cfg.data, f"dict.{self.cfg.labels}.txt")
return Dictionary.load(dict_path)
return None
def load_dataset(
self, split: str, task_cfg: AudioFinetuningConfig = None, **kwargs
):
super().load_dataset(split, task_cfg, **kwargs)
task_cfg = task_cfg or self.cfg
assert task_cfg.labels is not None
text_compression_level = getattr(
TextCompressionLevel, str(self.cfg.text_compression_level)
)
data_path = self.cfg.data
label_path = os.path.join(data_path, f"{split}.{task_cfg.labels}")
skipped_indices = getattr(self.datasets[split], "skipped_indices", set())
text_compressor = TextCompressor(level=text_compression_level)
with open(label_path, "r") as f:
labels = [
text_compressor.compress(l)
for i, l in enumerate(f)
if i not in skipped_indices
]
assert len(labels) == len(self.datasets[split]), (
f"labels length ({len(labels)}) and dataset length "
f"({len(self.datasets[split])}) do not match"
)
process_label = LabelEncoder(self.target_dictionary)
self.datasets[split] = AddTargetDataset(
self.datasets[split],
labels,
pad=self.target_dictionary.pad(),
eos=self.target_dictionary.eos(),
batch_targets=True,
process_label=process_label,
label_len_fn=label_len_fn,
add_to_input=task_cfg.get("autoregressive", False),
text_compression_level=text_compression_level,
)
@property
def target_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self.state.target_dictionary
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
if self.cfg.eval_wer and self.cfg.autoregressive:
metrics = self._inference_with_wer(self.sequence_generator, sample, model)
logging_output["_num_char_errors"] = metrics["num_char_errors"]
logging_output["_num_chars"] = metrics["num_chars"]
logging_output["_num_word_errors"] = metrics["num_word_errors"]
logging_output["_num_words"] = metrics["num_words"]
if self.cfg.eval_bleu and self.cfg.autoregressive:
metrics = self._inference_with_bleu(self.sequence_generator, sample, model)
logging_output["_bleu_sys_len"] = metrics.sys_len
logging_output["_bleu_ref_len"] = metrics.ref_len
# we split counts into separate entries so that they can be
# summed efficiently across workers using fast-stat-sync
assert len(metrics.counts) == 4
for i in range(4):
logging_output[f"_bleu_counts_{i}"] = metrics.counts[i]
logging_output[f"_bleu_totals_{i}"] = metrics.totals[i]
return loss, sample_size, logging_output
def build_model(self, model_cfg: FairseqDataclass, from_checkpoint=False):
model = super().build_model(model_cfg, from_checkpoint)
if self.cfg.eval_wer and self.cfg.autoregressive:
self.sequence_generator = self.build_generator(
[model],
self.cfg.eval_wer_config,
)
if self.cfg.eval_wer_tokenizer:
self.tokenizer = encoders.build_tokenizer(self.cfg.eval_wer_tokenizer)
else:
self.tokenizer = None
if self.cfg.eval_bleu and self.cfg.autoregressive:
assert self.cfg.eval_bleu_detok is not None, (
"--eval-bleu-detok is required if using --eval-bleu; "
"try --eval-bleu-detok=moses (or --eval-bleu-detok=space "
"to disable detokenization, e.g., when using sentencepiece)"
)
detok_args = json.loads(self.cfg.eval_bleu_detok_args)
self.tokenizer = encoders.build_tokenizer(
Namespace(tokenizer=self.cfg.eval_bleu_detok, **detok_args)
)
gen_args = json.loads(self.cfg.eval_bleu_args)
gen_args = Namespace(**gen_args)
self.sequence_generator = self.build_generator([model], gen_args)
return model
def _inference_with_wer(self, generator, sample, model):
import editdistance
def decode(toks):
s = self.target_dictionary.string(
toks.int().cpu(),
self.cfg.eval_wer_post_process,
escape_unk=True,
)
if self.tokenizer:
s = self.tokenizer.decode(s)
return s
num_word_errors, num_char_errors = 0, 0
num_chars, num_words = 0, 0
gen_out = self.inference_step(generator, [model], sample, None)
for i in range(len(gen_out)):
hyp = decode(gen_out[i][0]["tokens"])
ref = decode(
utils.strip_pad(sample["target"][i], self.target_dictionary.pad()),
)
num_char_errors += editdistance.eval(hyp, ref)
num_chars += len(ref)
hyp_words = hyp.split()
ref_words = ref.split()
num_word_errors += editdistance.eval(hyp_words, ref_words)
num_words += len(ref_words)
return {
"num_char_errors": num_char_errors,
"num_chars": num_chars,
"num_word_errors": num_word_errors,
"num_words": num_words,
}
def _inference_with_bleu(self, generator, sample, model):
import sacrebleu
def decode(toks, is_ref):
s = self.target_dictionary.string(
toks.int().cpu(),
self.cfg.eval_bleu_remove_bpe,
# The default unknown string in fairseq is `<unk>`, but
# this is tokenized by sacrebleu as `< unk >`, inflating
# BLEU scores. Instead, we use a somewhat more verbose
# alternative that is unlikely to appear in the real
# reference, but doesn't get split into multiple tokens.
unk_string=("UNKNOWNTOKENINREF" if is_ref else "UNKNOWNTOKENINHYP"),
)
if self.tokenizer:
s = self.tokenizer.decode(s)
return s
gen_out = self.inference_step(generator, [model], sample)
hyps, refs = [], []
for i in range(len(gen_out)):
hyps.append(decode(gen_out[i][0]["tokens"], is_ref=False))
refs.append(
decode(
utils.strip_pad(sample["target"][i], self.target_dictionary.pad()),
is_ref=True, # don't count <unk> as matches to the hypo
)
)
if self.cfg.eval_bleu_print_samples:
logger.info("H-{} {}".format(sample["id"][0], hyps[0]))
logger.info("T-{} {}".format(sample["id"][0], refs[0]))
eval_tokenization = "none" if self.cfg.eval_tokenized_bleu else "13a"
return sacrebleu.corpus_bleu(hyps, [refs], tokenize=eval_tokenization)
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
if self.cfg.eval_wer:
zero = torch.scalar_tensor(0.0)
num_char_errors = sum(
log.get("_num_char_errors", zero) for log in logging_outputs
)
num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs)
num_word_errors = sum(
log.get("_num_word_errors", zero) for log in logging_outputs
)
num_words = sum(log.get("_num_words", zero) for log in logging_outputs)
metrics.log_scalar("_num_char_errors", num_char_errors)
metrics.log_scalar("_num_chars", num_chars)
metrics.log_scalar("_num_word_errors", num_word_errors)
metrics.log_scalar("_num_words", num_words)
if num_chars > 0:
metrics.log_derived(
"uer",
lambda meters: meters["_num_char_errors"].sum
* 100.0
/ meters["_num_chars"].sum
if meters["_num_chars"].sum > 0
else float("nan"),
)
if num_words > 0:
metrics.log_derived(
"wer",
lambda meters: meters["_num_word_errors"].sum
* 100.0
/ meters["_num_words"].sum
if meters["_num_words"].sum > 0
else float("nan"),
)
if self.cfg.eval_bleu:
len_keys = ["_bleu_sys_len", "_bleu_ref_len"]
count_keys = [f"_bleu_counts_{i}" for i in range(4)]
total_keys = [f"_bleu_totals_{i}" for i in range(4)]
for k in len_keys + count_keys + total_keys:
metrics.log_scalar(k, sum(log.get(k, 0) for log in logging_outputs))
import sacrebleu
metrics.log_derived(
"bleu",
lambda meters: sacrebleu.compute_bleu(
correct=[meters[k].sum for k in count_keys],
total=[meters[k].sum for k in total_keys],
sys_len=meters["_bleu_sys_len"].sum,
ref_len=meters["_bleu_ref_len"].sum,
smooth_method="exp",
).score,
)
|