Spaces:
Running
Running
File size: 9,312 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
from omegaconf import II
from fairseq.data import (
AppendTokenDataset,
ConcatDataset,
DenoisingDataset,
Dictionary,
PrependTokenDataset,
ResamplingDataset,
SortDataset,
TokenBlockDataset,
data_utils,
)
from fairseq.data.encoders.utils import get_whole_word_mask
from fairseq.tasks import register_task
from .denoising import DenoisingConfig, DenoisingTask
logger = logging.getLogger(__name__)
@dataclass
class MultilingualDenoisingConfig(DenoisingConfig):
multilang_sampling_alpha: float = field(
default=1.0,
metadata={"help": "smoothing alpha for sample ratios across multiple datasets"},
)
add_lang_token: bool = field(
default=False,
metadata={"help": ""},
)
langs: Optional[str] = field(
default=None,
metadata={"help": "language ids we are considering"},
)
no_whole_word_mask_langs: str = field(
default="",
metadata={
"help": "languages without spacing between words don't support whole word masking"
},
)
train_subset: str = II("common.train_subset")
valid_subset: str = II("common.valid_subset")
@register_task("multilingual_denoising", dataclass=MultilingualDenoisingConfig)
class MultilingualDenoisingTask(DenoisingTask):
cfg: MultilingualDenoisingConfig
@classmethod
def setup_task(cls, cfg: MultilingualDenoisingConfig, **kwargs):
"""Setup the task."""
paths = cfg.data.split(":")
assert len(paths) > 0
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
data_path = paths[0]
if cfg.langs is None:
languages = sorted(
[
name
for name in os.listdir(data_path)
if os.path.isdir(os.path.join(data_path, name))
]
)
else:
languages = cfg.langs.split(",")
if cfg.add_lang_token:
for lang in languages:
dictionary.add_symbol("[{}]".format(lang))
logger.info("dictionary: {} types".format(len(dictionary)))
if not hasattr(cfg, "shuffle_instance"):
cfg.shuffle_instance = False
return cls(cfg, dictionary)
def __init__(self, cfg: MultilingualDenoisingConfig, dictionary):
super().__init__(cfg, dictionary)
self.dictionary = dictionary
# add mask token
self.mask_idx = self.dictionary.add_symbol("<mask>")
self.cfg = cfg
def _get_sample_prob(self, dataset_lens):
"""
Get smoothed sampling probability by languages. This helps low resource
languages by upsampling them.
"""
prob = dataset_lens / dataset_lens.sum()
smoothed_prob = prob**self.cfg.multilang_sampling_alpha
smoothed_prob = smoothed_prob / smoothed_prob.sum()
return smoothed_prob
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = self.cfg.data.split(":")
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
split_path = os.path.join(data_path, split)
if self.cfg.langs is None:
languages = sorted(
[
name
for name in os.listdir(data_path)
if os.path.isdir(os.path.join(data_path, name))
]
)
else:
languages = self.cfg.langs.split(",")
for name in languages:
p = os.path.join(data_path, name)
assert os.path.exists(p), "data not found: {}".format(p)
logger.info("Training on {0} languages: {1}".format(len(languages), languages))
logger.info(
"Language to id mapping: ", {lang: id for id, lang in enumerate(languages)}
)
mask_whole_words = get_whole_word_mask(self.cfg.bpe, self.dictionary)
language_without_segmentations = self.cfg.no_whole_word_mask_langs.split(",")
lang_datasets = []
for language in languages:
split_path = os.path.join(data_path, language, split)
dataset = data_utils.load_indexed_dataset(
split_path,
self.source_dictionary,
self.cfg.dataset_impl,
combine=combine,
)
if dataset is None:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, split_path)
)
end_token = (
self.source_dictionary.index("[{}]".format(language))
if self.cfg.add_lang_token
else self.source_dictionary.eos()
)
# create continuous blocks of tokens
dataset = TokenBlockDataset(
dataset,
dataset.sizes,
self.cfg.tokens_per_sample - 2, # one less for <s>
pad=self.source_dictionary.pad(),
eos=end_token,
break_mode=self.cfg.sample_break_mode,
)
logger.info("loaded {} blocks from: {}".format(len(dataset), split_path))
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos())
dataset = AppendTokenDataset(dataset, end_token)
lang_mask_whole_words = (
mask_whole_words
if language not in language_without_segmentations
else None
)
lang_dataset = DenoisingDataset(
dataset,
dataset.sizes,
self.dictionary,
self.mask_idx,
lang_mask_whole_words,
shuffle=self.cfg.shuffle_instance,
seed=self.cfg.seed,
mask=self.cfg.mask,
mask_random=self.cfg.mask_random,
insert=self.cfg.insert,
rotate=self.cfg.rotate,
permute_sentences=self.cfg.permute_sentences,
bpe=self.cfg.bpe,
replace_length=self.cfg.replace_length,
mask_length=self.cfg.mask_length,
poisson_lambda=self.cfg.poisson_lambda,
eos=None
if not self.cfg.add_lang_token
else self.source_dictionary.index("[{}]".format(language)),
)
lang_datasets.append(lang_dataset)
dataset_lengths = np.array(
[len(d) for d in lang_datasets],
dtype=float,
)
logger.info(
"loaded total {} blocks for all languages".format(
int(dataset_lengths.sum()),
)
)
if split == self.cfg.train_subset:
# For train subset, additionally up or down sample languages.
sample_probs = self._get_sample_prob(dataset_lengths)
logger.info(
"Sample probability by language: {}".format(
{
lang: "{0:.4f}".format(sample_probs[id])
for id, lang in enumerate(languages)
}
)
)
size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths
logger.info(
"Up/Down Sampling ratio by language: {}".format(
{
lang: "{0:.2f}".format(size_ratio[id])
for id, lang in enumerate(languages)
}
)
)
resampled_lang_datasets = [
ResamplingDataset(
lang_datasets[i],
size_ratio=size_ratio[i],
seed=self.cfg.seed,
epoch=epoch,
replace=size_ratio[i] >= 1.0,
)
for i, d in enumerate(lang_datasets)
]
dataset = ConcatDataset(
resampled_lang_datasets,
)
else:
dataset = ConcatDataset(lang_datasets)
lang_splits = [split]
for lang_id, lang_dataset in enumerate(lang_datasets):
split_name = split + "_" + languages[lang_id]
lang_splits.append(split_name)
self.datasets[split_name] = lang_dataset
if split in self.cfg.valid_subset:
self.cfg.valid_subset = self.cfg.valid_subset.replace(
split, ",".join(lang_splits)
)
with data_utils.numpy_seed(self.cfg.seed + epoch):
shuffle = np.random.permutation(len(dataset))
self.datasets[split] = SortDataset(
dataset,
sort_order=[
shuffle,
dataset.sizes,
],
)
|