Spaces:
Running
Running
File size: 18,165 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import logging
import os
from collections import OrderedDict
from argparse import ArgumentError
import torch
from fairseq import metrics, options, utils
from fairseq.data import (
Dictionary,
LanguagePairDataset,
RoundRobinZipDatasets,
TransformEosLangPairDataset,
)
from fairseq.models import FairseqMultiModel
from fairseq.tasks.translation import load_langpair_dataset
from . import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
def _lang_token(lang: str):
return "__{}__".format(lang)
def _lang_token_index(dic: Dictionary, lang: str):
"""Return language token index."""
idx = dic.index(_lang_token(lang))
assert idx != dic.unk_index, "cannot find language token for lang {}".format(lang)
return idx
@register_task("multilingual_translation")
class MultilingualTranslationTask(LegacyFairseqTask):
"""A task for training multiple translation models simultaneously.
We iterate round-robin over batches from multiple language pairs, ordered
according to the `--lang-pairs` argument.
The training loop is roughly:
for i in range(len(epoch)):
for lang_pair in args.lang_pairs:
batch = next_batch_for_lang_pair(lang_pair)
loss = criterion(model_for_lang_pair(lang_pair), batch)
loss.backward()
optimizer.step()
In practice, `next_batch_for_lang_pair` is abstracted in a FairseqDataset
(e.g., `RoundRobinZipDatasets`) and `model_for_lang_pair` is a model that
implements the `FairseqMultiModel` interface.
During inference it is required to specify a single `--source-lang` and
`--target-lang`, which indicates the inference langauge direction.
`--lang-pairs`, `--encoder-langtok`, `--decoder-langtok` have to be set to
the same value as training.
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
# fmt: off
parser.add_argument('data', metavar='DIR', help='path to data directory')
parser.add_argument('--lang-pairs', default=None, metavar='PAIRS',
help='comma-separated list of language pairs (in training order): en-de,en-fr,de-fr')
parser.add_argument('-s', '--source-lang', default=None, metavar='SRC',
help='source language (only needed for inference)')
parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET',
help='target language (only needed for inference)')
parser.add_argument('--left-pad-source', default='True', type=str, metavar='BOOL',
help='pad the source on the left (default: True)')
parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL',
help='pad the target on the left (default: False)')
try:
parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N',
help='max number of tokens in the source sequence')
parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N',
help='max number of tokens in the target sequence')
except ArgumentError:
# this might have already been defined. Once we transition this to hydra it should be fine to add it here.
pass
parser.add_argument('--upsample-primary', default=1, type=int,
help='amount to upsample primary dataset')
parser.add_argument('--encoder-langtok', default=None, type=str, choices=['src', 'tgt'],
metavar='SRCTGT',
help='replace beginning-of-sentence in source sentence with source or target '
'language token. (src/tgt)')
parser.add_argument('--decoder-langtok', action='store_true',
help='replace beginning-of-sentence in target sentence with target language token')
# fmt: on
def __init__(self, args, dicts, training):
super().__init__(args)
self.dicts = dicts
self.training = training
if training:
self.lang_pairs = args.lang_pairs
else:
self.lang_pairs = ["{}-{}".format(args.source_lang, args.target_lang)]
# eval_lang_pairs for multilingual translation is usually all of the
# lang_pairs. However for other multitask settings or when we want to
# optimize for certain languages we want to use a different subset. Thus
# the eval_lang_pairs class variable is provided for classes that extend
# this class.
self.eval_lang_pairs = self.lang_pairs
# model_lang_pairs will be used to build encoder-decoder model pairs in
# models.build_model(). This allows multitask type of sub-class can
# build models other than the input lang_pairs
self.model_lang_pairs = self.lang_pairs
self.langs = list(dicts.keys())
@classmethod
def setup_task(cls, args, **kwargs):
dicts, training = cls.prepare(args, **kwargs)
return cls(args, dicts, training)
@classmethod
def update_args(cls, args):
args.left_pad_source = utils.eval_bool(args.left_pad_source)
args.left_pad_target = utils.eval_bool(args.left_pad_target)
if args.lang_pairs is None:
raise ValueError(
"--lang-pairs is required. List all the language pairs in the training objective."
)
if isinstance(args.lang_pairs, str):
args.lang_pairs = args.lang_pairs.split(",")
@classmethod
def prepare(cls, args, **kargs):
cls.update_args(args)
sorted_langs = sorted(
list({x for lang_pair in args.lang_pairs for x in lang_pair.split("-")})
)
if args.source_lang is not None or args.target_lang is not None:
training = False
else:
training = True
# load dictionaries
dicts = OrderedDict()
for lang in sorted_langs:
paths = utils.split_paths(args.data)
assert len(paths) > 0
dicts[lang] = cls.load_dictionary(
os.path.join(paths[0], "dict.{}.txt".format(lang))
)
if len(dicts) > 0:
assert dicts[lang].pad() == dicts[sorted_langs[0]].pad()
assert dicts[lang].eos() == dicts[sorted_langs[0]].eos()
assert dicts[lang].unk() == dicts[sorted_langs[0]].unk()
if args.encoder_langtok is not None or args.decoder_langtok:
for lang_to_add in sorted_langs:
dicts[lang].add_symbol(_lang_token(lang_to_add))
logger.info("[{}] dictionary: {} types".format(lang, len(dicts[lang])))
return dicts, training
def get_encoder_langtok(self, src_lang, tgt_lang):
if self.args.encoder_langtok is None:
return self.dicts[src_lang].eos()
if self.args.encoder_langtok == "src":
return _lang_token_index(self.dicts[src_lang], src_lang)
else:
return _lang_token_index(self.dicts[src_lang], tgt_lang)
def get_decoder_langtok(self, tgt_lang):
if not self.args.decoder_langtok:
return self.dicts[tgt_lang].eos()
return _lang_token_index(self.dicts[tgt_lang], tgt_lang)
def alter_dataset_langtok(
self,
lang_pair_dataset,
src_eos=None,
src_lang=None,
tgt_eos=None,
tgt_lang=None,
):
if self.args.encoder_langtok is None and not self.args.decoder_langtok:
return lang_pair_dataset
new_src_eos = None
if (
self.args.encoder_langtok is not None
and src_eos is not None
and src_lang is not None
and tgt_lang is not None
):
new_src_eos = self.get_encoder_langtok(src_lang, tgt_lang)
else:
src_eos = None
new_tgt_bos = None
if self.args.decoder_langtok and tgt_eos is not None and tgt_lang is not None:
new_tgt_bos = self.get_decoder_langtok(tgt_lang)
else:
tgt_eos = None
return TransformEosLangPairDataset(
lang_pair_dataset,
src_eos=src_eos,
new_src_eos=new_src_eos,
tgt_bos=tgt_eos,
new_tgt_bos=new_tgt_bos,
)
def load_dataset(self, split, epoch=1, **kwargs):
"""Load a dataset split."""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
def language_pair_dataset(lang_pair):
src, tgt = lang_pair.split("-")
langpair_dataset = load_langpair_dataset(
data_path,
split,
src,
self.dicts[src],
tgt,
self.dicts[tgt],
combine=True,
dataset_impl=self.args.dataset_impl,
upsample_primary=self.args.upsample_primary,
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
max_source_positions=self.args.max_source_positions,
max_target_positions=self.args.max_target_positions,
)
return self.alter_dataset_langtok(
langpair_dataset,
src_eos=self.dicts[src].eos(),
src_lang=src,
tgt_eos=self.dicts[tgt].eos(),
tgt_lang=tgt,
)
self.datasets[split] = RoundRobinZipDatasets(
OrderedDict(
[
(lang_pair, language_pair_dataset(lang_pair))
for lang_pair in self.lang_pairs
]
),
eval_key=None
if self.training
else "%s-%s" % (self.args.source_lang, self.args.target_lang),
)
def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None):
if constraints is not None:
raise NotImplementedError(
"Constrained decoding with the multilingual_translation task is not supported"
)
lang_pair = "%s-%s" % (self.args.source_lang, self.args.target_lang)
return RoundRobinZipDatasets(
OrderedDict(
[
(
lang_pair,
self.alter_dataset_langtok(
LanguagePairDataset(
src_tokens, src_lengths, self.source_dictionary
),
src_eos=self.source_dictionary.eos(),
src_lang=self.args.source_lang,
tgt_eos=self.target_dictionary.eos(),
tgt_lang=self.args.target_lang,
),
)
]
),
eval_key=lang_pair,
)
def build_model(self, args, from_checkpoint=False):
def check_args():
messages = []
if (
len(set(self.args.lang_pairs).symmetric_difference(args.lang_pairs))
!= 0
):
messages.append(
"--lang-pairs should include all the language pairs {}.".format(
args.lang_pairs
)
)
if self.args.encoder_langtok != args.encoder_langtok:
messages.append(
"--encoder-langtok should be {}.".format(args.encoder_langtok)
)
if self.args.decoder_langtok != args.decoder_langtok:
messages.append(
"--decoder-langtok should {} be set.".format(
"" if args.decoder_langtok else "not"
)
)
if len(messages) > 0:
raise ValueError(" ".join(messages))
# Update args -> the fact that the constructor here
# changes the args object doesn't mean you get the same one here
self.update_args(args)
# Check if task args are consistant with model args
check_args()
from fairseq import models
model = models.build_model(args, self, from_checkpoint)
if not isinstance(model, FairseqMultiModel):
raise ValueError(
"MultilingualTranslationTask requires a FairseqMultiModel architecture"
)
return model
def _per_lang_pair_train_loss(
self, lang_pair, model, update_num, criterion, sample, optimizer, ignore_grad
):
loss, sample_size, logging_output = criterion(
model.models[lang_pair], sample[lang_pair]
)
if ignore_grad:
loss *= 0
optimizer.backward(loss)
return loss, sample_size, logging_output
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
model.train()
from collections import defaultdict
agg_loss, agg_sample_size, agg_logging_output = 0.0, 0.0, defaultdict(float)
curr_lang_pairs = [
lang_pair
for lang_pair in self.model_lang_pairs
if sample[lang_pair] is not None and len(sample[lang_pair]) != 0
]
for idx, lang_pair in enumerate(curr_lang_pairs):
def maybe_no_sync():
if (
self.args.distributed_world_size > 1
and hasattr(model, "no_sync")
and idx < len(curr_lang_pairs) - 1
):
return model.no_sync()
else:
return contextlib.ExitStack() # dummy contextmanager
with maybe_no_sync():
loss, sample_size, logging_output = self._per_lang_pair_train_loss(
lang_pair,
model,
update_num,
criterion,
sample,
optimizer,
ignore_grad,
)
agg_loss += loss.detach().item()
# TODO make summing of the sample sizes configurable
agg_sample_size += sample_size
for k in logging_output:
agg_logging_output[k] += logging_output[k]
agg_logging_output[f"{lang_pair}:{k}"] += logging_output[k]
return agg_loss, agg_sample_size, agg_logging_output
def _per_lang_pair_valid_loss(self, lang_pair, model, criterion, sample):
return criterion(model.models[lang_pair], sample[lang_pair])
def valid_step(self, sample, model, criterion):
model.eval()
with torch.no_grad():
from collections import defaultdict
agg_loss, agg_sample_size, agg_logging_output = 0.0, 0.0, defaultdict(float)
for lang_pair in self.eval_lang_pairs:
if (
lang_pair not in sample
or sample[lang_pair] is None
or len(sample[lang_pair]) == 0
):
continue
loss, sample_size, logging_output = self._per_lang_pair_valid_loss(
lang_pair, model, criterion, sample
)
agg_loss += loss.data.item()
# TODO make summing of the sample sizes configurable
agg_sample_size += sample_size
for k in logging_output:
agg_logging_output[k] += logging_output[k]
agg_logging_output[f"{lang_pair}:{k}"] += logging_output[k]
return agg_loss, agg_sample_size, agg_logging_output
def inference_step(
self, generator, models, sample, prefix_tokens=None, constraints=None
):
with torch.no_grad():
if self.args.decoder_langtok:
bos_token = _lang_token_index(
self.target_dictionary, self.args.target_lang
)
else:
bos_token = self.target_dictionary.eos()
return generator.generate(
models,
sample,
prefix_tokens=prefix_tokens,
constraints=constraints,
bos_token=bos_token,
)
def reduce_metrics(self, logging_outputs, criterion):
with metrics.aggregate():
# pass 'sample_size', 'nsentences', 'ntokens' stats to fairseq_task
super().reduce_metrics(logging_outputs, criterion)
for k in ["sample_size", "nsentences", "ntokens"]:
metrics.log_scalar(k, sum(l[k] for l in logging_outputs))
@property
def source_dictionary(self):
if self.training:
return next(iter(self.dicts.values()))
else:
return self.dicts[self.args.source_lang]
@property
def target_dictionary(self):
if self.training:
return next(iter(self.dicts.values()))
else:
return self.dicts[self.args.target_lang]
def max_positions(self):
"""Return the max sentence length allowed by the task."""
if len(self.datasets.values()) == 0:
return {
"%s-%s"
% (self.args.source_lang, self.args.target_lang): (
self.args.max_source_positions,
self.args.max_target_positions,
)
}
return OrderedDict(
[
(key, (self.args.max_source_positions, self.args.max_target_positions))
for split in self.datasets.keys()
for key in self.datasets[split].datasets.keys()
]
)
|