Spaces:
Running
Running
File size: 13,121 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from argparse import Namespace
from pathlib import Path
from typing import List
from fairseq.data import Dictionary, encoders
from fairseq.data.audio.audio_utils import get_features_or_waveform
from fairseq.data.audio.data_cfg import MultitaskConfig
from fairseq.data.audio.speech_to_text_dataset import (
S2TDataConfig,
SpeechToTextDataset,
SpeechToTextDatasetCreator,
TextTargetMultitaskData,
)
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("speech_to_text")
class SpeechToTextTask(LegacyFairseqTask):
@classmethod
def add_args(cls, parser):
parser.add_argument("data", help="manifest root path")
parser.add_argument(
"--config-yaml",
type=str,
default="config.yaml",
help="Configuration YAML filename (under manifest root)",
)
parser.add_argument(
"--multitask-config-yaml",
type=str,
default=None,
help="Configuration YAML filename for the multitasks (under manifest root)",
)
parser.add_argument(
"--max-source-positions",
default=6000,
type=int,
metavar="N",
help="max number of tokens in the source sequence",
)
parser.add_argument(
"--max-target-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the target sequence",
)
def __init__(self, args, tgt_dict):
super().__init__(args)
self.tgt_dict = tgt_dict
self.data_cfg = S2TDataConfig(Path(args.data) / args.config_yaml)
self.speaker_to_id = self._get_speaker_to_id()
if (
self.data_cfg.prepend_tgt_lang_tag
and self.data_cfg.prepend_bos_and_append_tgt_lang_tag
):
raise ValueError(
"Please set only one of the two options to avoid adding target token multiple times"
)
self.multitask_tasks = {}
self.tgt_dict_mt = None
self.eos_token_mt = None
if getattr(args, "multitask_config_yaml", None) is not None:
multitask_cfg = MultitaskConfig(
Path(args.data) / args.multitask_config_yaml
)
first_pass_task_idx = multitask_cfg.first_pass_decoder_task_index
for i, (task_name, task_config) in enumerate(
multitask_cfg.get_all_tasks().items()
):
task_obj = DummyMultiTask(
task_config,
task_config.tgt_dict,
first_pass=i == first_pass_task_idx,
)
self.multitask_tasks[task_name] = task_obj
if task_obj.is_first_pass_decoder:
self.tgt_dict_mt = task_obj.target_dictionary
if task_config.prepend_bos_and_append_tgt_lang_tag:
self.eos_token_mt = task_config.eos_token
assert not isinstance(self.eos_token_mt, List)
if not self.eos_token_mt:
raise Warning(
"Please provide eos_token in --multitask-config-yaml to replace eos in sequence generator"
)
def _get_speaker_to_id(self):
speaker_to_id = None
speaker_set_filename = self.data_cfg.config.get("speaker_set_filename")
if speaker_set_filename is not None:
speaker_set_path = Path(self.args.data) / speaker_set_filename
with open(speaker_set_path) as f:
speaker_to_id = {r.strip(): i for i, r in enumerate(f)}
return speaker_to_id
@classmethod
def setup_task(cls, args, **kwargs):
data_cfg = S2TDataConfig(Path(args.data) / args.config_yaml)
dict_path = Path(args.data) / data_cfg.vocab_filename
if not dict_path.is_file():
raise FileNotFoundError(f"Dict not found: {dict_path.as_posix()}")
tgt_dict = Dictionary.load(dict_path.as_posix())
logger.info(
f"dictionary size ({data_cfg.vocab_filename}): " f"{len(tgt_dict):,}"
)
if getattr(args, "train_subset", None) is not None:
if not all(s.startswith("train") for s in args.train_subset.split(",")):
raise ValueError('Train splits should be named like "train*".')
return cls(args, tgt_dict)
def build_criterion(self, args):
from fairseq import criterions
if self.data_cfg.prepend_tgt_lang_tag and args.ignore_prefix_size != 1:
raise ValueError(
'Please set "--ignore-prefix-size 1" since '
"target language ID token is prepended as BOS."
)
return criterions.build_criterion(args, self)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
is_train_split = split.startswith("train")
pre_tokenizer = self.build_tokenizer(self.args)
bpe_tokenizer = self.build_bpe(self.args)
self.datasets[split] = SpeechToTextDatasetCreator.from_tsv(
root=self.args.data,
cfg=self.data_cfg,
splits=split,
tgt_dict=self.tgt_dict,
pre_tokenizer=pre_tokenizer,
bpe_tokenizer=bpe_tokenizer,
is_train_split=is_train_split,
epoch=epoch,
seed=self.args.seed,
speaker_to_id=self.speaker_to_id,
multitask=self.multitask_tasks,
)
@property
def target_dictionary(self):
return self.tgt_dict
@property
def target_dictionary_mt(self):
return self.tgt_dict_mt
@property
def source_dictionary(self):
return None
def max_positions(self):
return self.args.max_source_positions, self.args.max_target_positions
def build_model(self, args, from_checkpoint=False):
args.input_feat_per_channel = self.data_cfg.input_feat_per_channel
args.input_channels = self.data_cfg.input_channels
args.speaker_to_id = self.speaker_to_id
return super(SpeechToTextTask, self).build_model(args, from_checkpoint)
def build_generator_dual_decoder(
self,
models,
args,
extra_gen_cls_kwargs,
):
from examples.speech_to_speech.unity.sequence_generator_multi_decoder import (
MultiDecoderSequenceGenerator,
)
lang_token_ids_aux = {
i
for s, i in self.tgt_dict_mt.indices.items()
if TextTargetMultitaskData.is_lang_tag(s)
}
extra_gen_cls_kwargs["symbols_to_strip_from_output"].update(lang_token_ids_aux)
eos_id_mt = (
self.tgt_dict_mt.index(self.eos_token_mt) if self.eos_token_mt else None
)
assert eos_id_mt != self.tgt_dict_mt.unk()
extra_gen_cls_kwargs["eos_mt"] = eos_id_mt
return MultiDecoderSequenceGenerator(
models,
self.target_dictionary,
self.target_dictionary_mt,
beam_size=max(1, getattr(args, "beam", 1)),
beam_size_mt=max(1, getattr(args, "beam_mt", 1)),
max_len_a=getattr(args, "max_len_a", 0),
max_len_b=getattr(args, "max_len_b", 200),
max_len_a_mt=getattr(args, "max_len_a_mt", 0),
max_len_b_mt=getattr(args, "max_len_b_mt", 0),
min_len=getattr(args, "min_len", 1),
normalize_scores=(not getattr(args, "unnormalized", False)),
len_penalty=getattr(args, "lenpen", 1),
len_penalty_mt=getattr(args, "lenpen_mt", 1),
unk_penalty=getattr(args, "unkpen", 0),
temperature=getattr(args, "temperature", 1.0),
match_source_len=getattr(args, "match_source_len", False),
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0),
**extra_gen_cls_kwargs,
)
def build_generator(
self,
models,
args,
seq_gen_cls=None,
extra_gen_cls_kwargs=None,
):
if self.data_cfg.prepend_tgt_lang_tag and args.prefix_size != 1:
raise ValueError(
'Please set "--prefix-size 1" since '
"target language ID token is prepended as BOS."
)
lang_token_ids = {
i
for s, i in self.tgt_dict.indices.items()
if SpeechToTextDataset.is_lang_tag(s)
}
if extra_gen_cls_kwargs is None:
extra_gen_cls_kwargs = {}
extra_gen_cls_kwargs["symbols_to_strip_from_output"] = lang_token_ids
eos_token = (
args.eos_token
if "eos_token" in args and args.eos_token is not None
else self.data_cfg.config.get("eos_token", None)
)
if self.data_cfg.prepend_bos_and_append_tgt_lang_tag and not eos_token:
raise Warning(
"Please provide --eos_token to replace eos in sequence generator"
)
eos_id = self.tgt_dict.index(eos_token) if eos_token else None
extra_gen_cls_kwargs["eos"] = eos_id
has_dual_decoder = getattr(models[0], "mt_task_name", None) is not None
if has_dual_decoder:
return self.build_generator_dual_decoder(
models,
args,
extra_gen_cls_kwargs=extra_gen_cls_kwargs,
)
else:
return super().build_generator(
models,
args,
seq_gen_cls=None,
extra_gen_cls_kwargs=extra_gen_cls_kwargs,
)
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
for task_name, task_obj in self.multitask_tasks.items():
criterion.set_multitask_loss_weight(
task_name, task_obj.args.get_loss_weight(update_num)
)
if task_name in model.multitask_decoders:
model.multitask_decoders[task_name].train()
loss, sample_size, logging_output = super().train_step(
sample, model, criterion, optimizer, update_num, ignore_grad
)
return loss, sample_size, logging_output
def valid_step(self, sample, model, criterion):
for task_name, task_obj in self.multitask_tasks.items():
if task_name in model.multitask_decoders:
model.multitask_decoders[task_name].eval()
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
return loss, sample_size, logging_output
def build_tokenizer(self, args):
logger.info(f"pre-tokenizer: {self.data_cfg.pre_tokenizer}")
return encoders.build_tokenizer(Namespace(**self.data_cfg.pre_tokenizer))
def build_bpe(self, args):
logger.info(f"tokenizer: {self.data_cfg.bpe_tokenizer}")
return encoders.build_bpe(Namespace(**self.data_cfg.bpe_tokenizer))
def get_interactive_tokens_and_lengths(self, lines, encode_fn):
n_frames = [get_features_or_waveform(p).shape[0] for p in lines]
return lines, n_frames
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs):
return SpeechToTextDataset(
"interactive", False, self.data_cfg, src_tokens, src_lengths
)
class DummyMultiTask(LegacyFairseqTask):
def __init__(self, args, tgt_dict, first_pass=False):
super().__init__(args)
self.tgt_dict = tgt_dict
self.first_pass = first_pass
@property
def target_dictionary(self):
return self.tgt_dict
@property
def is_first_pass_decoder(self):
return self.first_pass
def inference_step(
self, generator, models, sample, prefix_tokens=None, constraints=None
):
if self.args.decoder_type == "ctc":
model = models[0] # only support single model
encoder_out = model(**sample)
if hasattr(model, "get_logits"):
emissions = model.get_logits(
encoder_out
) # no need to normalize emissions
else:
emissions = model.get_normalized_probs(encoder_out, log_probs=True)
return generator.decode(
emissions.transpose(0, 1).float().cpu().contiguous()
)
else:
raise NotImplementedError("only ctc decoder is supported at the moment")
def build_generator(
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None
):
if self.args.decoder_type == "ctc":
from examples.speech_recognition.w2l_decoder import W2lViterbiDecoder
return W2lViterbiDecoder(args, self.tgt_dict)
else:
raise NotImplementedError("only ctc decoder is supported at the moment")
|