File size: 17,256 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os
import os.path as op

import torch
import torch.nn.functional as F
import numpy as np

from fairseq.data.audio.text_to_speech_dataset import TextToSpeechDatasetCreator
from fairseq.tasks import register_task
from fairseq.tasks.speech_to_text import SpeechToTextTask
from fairseq.speech_generator import (
    AutoRegressiveSpeechGenerator,
    NonAutoregressiveSpeechGenerator,
    TeacherForcingAutoRegressiveSpeechGenerator,
)

logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level=logging.INFO,
)
logger = logging.getLogger(__name__)


try:
    from tensorboardX import SummaryWriter
except ImportError:
    logger.info("Please install tensorboardX: pip install tensorboardX")
    SummaryWriter = None


@register_task("text_to_speech")
class TextToSpeechTask(SpeechToTextTask):
    @staticmethod
    def add_args(parser):
        parser.add_argument("data", help="manifest root path")
        parser.add_argument(
            "--config-yaml",
            type=str,
            default="config.yaml",
            help="Configuration YAML filename (under manifest root)",
        )
        parser.add_argument(
            "--max-source-positions",
            default=1024,
            type=int,
            metavar="N",
            help="max number of tokens in the source sequence",
        )
        parser.add_argument(
            "--max-target-positions",
            default=1200,
            type=int,
            metavar="N",
            help="max number of tokens in the target sequence",
        )
        parser.add_argument("--n-frames-per-step", type=int, default=1)
        parser.add_argument("--eos-prob-threshold", type=float, default=0.5)
        parser.add_argument("--eval-inference", action="store_true")
        parser.add_argument("--eval-tb-nsample", type=int, default=8)
        parser.add_argument("--vocoder", type=str, default="griffin_lim")
        parser.add_argument("--spec-bwd-max-iter", type=int, default=8)

    def __init__(self, args, src_dict):
        super().__init__(args, src_dict)
        self.src_dict = src_dict
        self.sr = self.data_cfg.config.get("features").get("sample_rate")

        self.tensorboard_writer = None
        self.tensorboard_dir = ""
        if args.tensorboard_logdir and SummaryWriter is not None:
            self.tensorboard_dir = os.path.join(args.tensorboard_logdir, "valid_extra")

    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        is_train_split = split.startswith("train")
        pre_tokenizer = self.build_tokenizer(self.args)
        bpe_tokenizer = self.build_bpe(self.args)
        self.datasets[split] = TextToSpeechDatasetCreator.from_tsv(
            self.args.data,
            self.data_cfg,
            split,
            self.src_dict,
            pre_tokenizer,
            bpe_tokenizer,
            is_train_split=is_train_split,
            epoch=epoch,
            seed=self.args.seed,
            n_frames_per_step=self.args.n_frames_per_step,
            speaker_to_id=self.speaker_to_id,
        )

    @property
    def target_dictionary(self):
        return None

    @property
    def source_dictionary(self):
        return self.src_dict

    def get_speaker_embeddings_path(self):
        speaker_emb_path = None
        if self.data_cfg.config.get("speaker_emb_filename") is not None:
            speaker_emb_path = op.join(
                self.args.data, self.data_cfg.config.get("speaker_emb_filename")
            )
        return speaker_emb_path

    @classmethod
    def get_speaker_embeddings(cls, args):
        embed_speaker = None
        if args.speaker_to_id is not None:
            if args.speaker_emb_path is None:
                embed_speaker = torch.nn.Embedding(
                    len(args.speaker_to_id), args.speaker_embed_dim
                )
            else:
                speaker_emb_mat = np.load(args.speaker_emb_path)
                assert speaker_emb_mat.shape[1] == args.speaker_embed_dim
                embed_speaker = torch.nn.Embedding.from_pretrained(
                    torch.from_numpy(speaker_emb_mat),
                    freeze=True,
                )
                logger.info(
                    f"load speaker embeddings from {args.speaker_emb_path}. "
                    f"train embedding? {embed_speaker.weight.requires_grad}\n"
                    f"embeddings:\n{speaker_emb_mat}"
                )
        return embed_speaker

    def build_model(self, cfg, from_checkpoint=False):
        cfg.pitch_min = self.data_cfg.config["features"].get("pitch_min", None)
        cfg.pitch_max = self.data_cfg.config["features"].get("pitch_max", None)
        cfg.energy_min = self.data_cfg.config["features"].get("energy_min", None)
        cfg.energy_max = self.data_cfg.config["features"].get("energy_max", None)
        cfg.speaker_emb_path = self.get_speaker_embeddings_path()
        model = super().build_model(cfg, from_checkpoint)
        self.generator = None
        if getattr(cfg, "eval_inference", False):
            self.generator = self.build_generator([model], cfg)
        return model

    def build_generator(self, models, cfg, vocoder=None, **unused):
        if vocoder is None:
            vocoder = self.build_default_vocoder()
        model = models[0]
        if getattr(model, "NON_AUTOREGRESSIVE", False):
            return NonAutoregressiveSpeechGenerator(model, vocoder, self.data_cfg)
        else:
            generator = AutoRegressiveSpeechGenerator
            if getattr(cfg, "teacher_forcing", False):
                generator = TeacherForcingAutoRegressiveSpeechGenerator
                logger.info("Teacher forcing mode for generation")
            return generator(
                model,
                vocoder,
                self.data_cfg,
                max_iter=self.args.max_target_positions,
                eos_prob_threshold=self.args.eos_prob_threshold,
            )

    def build_default_vocoder(self):
        from fairseq.models.text_to_speech.vocoder import get_vocoder

        vocoder = get_vocoder(self.args, self.data_cfg)
        if torch.cuda.is_available() and not self.args.cpu:
            vocoder = vocoder.cuda()
        else:
            vocoder = vocoder.cpu()
        return vocoder

    def valid_step(self, sample, model, criterion):
        loss, sample_size, logging_output = super().valid_step(sample, model, criterion)

        if getattr(self.args, "eval_inference", False):
            hypos, inference_losses = self.valid_step_with_inference(
                sample, model, self.generator
            )
            for k, v in inference_losses.items():
                assert k not in logging_output
                logging_output[k] = v

            picked_id = 0
            if self.tensorboard_dir and (sample["id"] == picked_id).any():
                self.log_tensorboard(
                    sample,
                    hypos[: self.args.eval_tb_nsample],
                    model._num_updates,
                    is_na_model=getattr(model, "NON_AUTOREGRESSIVE", False),
                )
        return loss, sample_size, logging_output

    def valid_step_with_inference(self, sample, model, generator):
        hypos = generator.generate(model, sample, has_targ=True)

        losses = {
            "mcd_loss": 0.0,
            "targ_frames": 0.0,
            "pred_frames": 0.0,
            "nins": 0.0,
            "ndel": 0.0,
        }
        rets = batch_mel_cepstral_distortion(
            [hypo["targ_waveform"] for hypo in hypos],
            [hypo["waveform"] for hypo in hypos],
            self.sr,
            normalize_type=None,
        )
        for d, extra in rets:
            pathmap = extra[-1]
            losses["mcd_loss"] += d.item()
            losses["targ_frames"] += pathmap.size(0)
            losses["pred_frames"] += pathmap.size(1)
            losses["nins"] += (pathmap.sum(dim=1) - 1).sum().item()
            losses["ndel"] += (pathmap.sum(dim=0) - 1).sum().item()

        return hypos, losses

    def log_tensorboard(self, sample, hypos, num_updates, is_na_model=False):
        if self.tensorboard_writer is None:
            self.tensorboard_writer = SummaryWriter(self.tensorboard_dir)
        tb_writer = self.tensorboard_writer
        for b in range(len(hypos)):
            idx = sample["id"][b]
            text = sample["src_texts"][b]
            targ = hypos[b]["targ_feature"]
            pred = hypos[b]["feature"]
            attn = hypos[b]["attn"]

            if is_na_model:
                data = plot_tts_output(
                    [targ.transpose(0, 1), pred.transpose(0, 1)],
                    [f"target (idx={idx})", "output"],
                    attn,
                    "alignment",
                    ret_np=True,
                    suptitle=text,
                )
            else:
                eos_prob = hypos[b]["eos_prob"]
                data = plot_tts_output(
                    [targ.transpose(0, 1), pred.transpose(0, 1), attn],
                    [f"target (idx={idx})", "output", "alignment"],
                    eos_prob,
                    "eos prob",
                    ret_np=True,
                    suptitle=text,
                )

            tb_writer.add_image(
                f"inference_sample_{b}", data, num_updates, dataformats="HWC"
            )

            if hypos[b]["waveform"] is not None:
                targ_wave = hypos[b]["targ_waveform"].detach().cpu().float()
                pred_wave = hypos[b]["waveform"].detach().cpu().float()
                tb_writer.add_audio(
                    f"inference_targ_{b}", targ_wave, num_updates, sample_rate=self.sr
                )
                tb_writer.add_audio(
                    f"inference_pred_{b}", pred_wave, num_updates, sample_rate=self.sr
                )


def save_figure_to_numpy(fig):
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    return data


DEFAULT_V_MIN = np.log(1e-5)


def plot_tts_output(
    data_2d,
    title_2d,
    data_1d,
    title_1d,
    figsize=(24, 4),
    v_min=DEFAULT_V_MIN,
    v_max=3,
    ret_np=False,
    suptitle="",
):
    try:
        import matplotlib.pyplot as plt
        from mpl_toolkits.axes_grid1 import make_axes_locatable
    except ImportError:
        raise ImportError("Please install Matplotlib: pip install matplotlib")

    data_2d = [
        x.detach().cpu().float().numpy() if isinstance(x, torch.Tensor) else x
        for x in data_2d
    ]
    fig, axes = plt.subplots(1, len(data_2d) + 1, figsize=figsize)
    if suptitle:
        fig.suptitle(suptitle[:400])  # capped at 400 chars
    axes = [axes] if len(data_2d) == 0 else axes
    for ax, x, name in zip(axes, data_2d, title_2d):
        ax.set_title(name)
        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.05)
        im = ax.imshow(
            x,
            origin="lower",
            aspect="auto",
            vmin=max(x.min(), v_min),
            vmax=min(x.max(), v_max),
        )
        fig.colorbar(im, cax=cax, orientation="vertical")

    if isinstance(data_1d, torch.Tensor):
        data_1d = data_1d.detach().cpu().numpy()
    axes[-1].plot(data_1d)
    axes[-1].set_title(title_1d)
    plt.tight_layout()

    if ret_np:
        fig.canvas.draw()
        data = save_figure_to_numpy(fig)
        plt.close(fig)
        return data


def antidiag_indices(offset, min_i=0, max_i=None, min_j=0, max_j=None):
    """
    for a (3, 4) matrix with min_i=1, max_i=3, min_j=1, max_j=4, outputs

    offset=2 (1, 1),
    offset=3 (2, 1), (1, 2)
    offset=4 (2, 2), (1, 3)
    offset=5 (2, 3)

    constraints:
        i + j = offset
        min_j <= j < max_j
        min_i <= offset - j < max_i
    """
    if max_i is None:
        max_i = offset + 1
    if max_j is None:
        max_j = offset + 1
    min_j = max(min_j, offset - max_i + 1, 0)
    max_j = min(max_j, offset - min_i + 1, offset + 1)
    j = torch.arange(min_j, max_j)
    i = offset - j
    return torch.stack([i, j])


def batch_dynamic_time_warping(distance, shapes=None):
    """full batched DTW without any constraints

    distance:  (batchsize, max_M, max_N) matrix
    shapes: (batchsize,) vector specifying (M, N) for each entry
    """
    # ptr: 0=left, 1=up-left, 2=up
    ptr2dij = {0: (0, -1), 1: (-1, -1), 2: (-1, 0)}

    bsz, m, n = distance.size()
    cumdist = torch.zeros_like(distance)
    backptr = torch.zeros_like(distance).type(torch.int32) - 1

    # initialize
    cumdist[:, 0, :] = distance[:, 0, :].cumsum(dim=-1)
    cumdist[:, :, 0] = distance[:, :, 0].cumsum(dim=-1)
    backptr[:, 0, :] = 0
    backptr[:, :, 0] = 2

    # DP with optimized anti-diagonal parallelization, O(M+N) steps
    for offset in range(2, m + n - 1):
        ind = antidiag_indices(offset, 1, m, 1, n)
        c = torch.stack(
            [
                cumdist[:, ind[0], ind[1] - 1],
                cumdist[:, ind[0] - 1, ind[1] - 1],
                cumdist[:, ind[0] - 1, ind[1]],
            ],
            dim=2,
        )
        v, b = c.min(axis=-1)
        backptr[:, ind[0], ind[1]] = b.int()
        cumdist[:, ind[0], ind[1]] = v + distance[:, ind[0], ind[1]]

    # backtrace
    pathmap = torch.zeros_like(backptr)
    for b in range(bsz):
        i = m - 1 if shapes is None else (shapes[b][0] - 1).item()
        j = n - 1 if shapes is None else (shapes[b][1] - 1).item()
        dtwpath = [(i, j)]
        while (i != 0 or j != 0) and len(dtwpath) < 10000:
            assert i >= 0 and j >= 0
            di, dj = ptr2dij[backptr[b, i, j].item()]
            i, j = i + di, j + dj
            dtwpath.append((i, j))
        dtwpath = dtwpath[::-1]
        indices = torch.from_numpy(np.array(dtwpath))
        pathmap[b, indices[:, 0], indices[:, 1]] = 1

    return cumdist, backptr, pathmap


def compute_l2_dist(x1, x2):
    """compute an (m, n) L2 distance matrix from (m, d) and (n, d) matrices"""
    return torch.cdist(x1.unsqueeze(0), x2.unsqueeze(0), p=2).squeeze(0).pow(2)


def compute_rms_dist(x1, x2):
    l2_dist = compute_l2_dist(x1, x2)
    return (l2_dist / x1.size(1)).pow(0.5)


def get_divisor(pathmap, normalize_type):
    if normalize_type is None:
        return 1
    elif normalize_type == "len1":
        return pathmap.size(0)
    elif normalize_type == "len2":
        return pathmap.size(1)
    elif normalize_type == "path":
        return pathmap.sum().item()
    else:
        raise ValueError(f"normalize_type {normalize_type} not supported")


def batch_compute_distortion(y1, y2, sr, feat_fn, dist_fn, normalize_type):
    d, s, x1, x2 = [], [], [], []
    for cur_y1, cur_y2 in zip(y1, y2):
        assert cur_y1.ndim == 1 and cur_y2.ndim == 1
        cur_x1 = feat_fn(cur_y1)
        cur_x2 = feat_fn(cur_y2)
        x1.append(cur_x1)
        x2.append(cur_x2)

        cur_d = dist_fn(cur_x1, cur_x2)
        d.append(cur_d)
        s.append(d[-1].size())
    max_m = max(ss[0] for ss in s)
    max_n = max(ss[1] for ss in s)
    d = torch.stack(
        [F.pad(dd, (0, max_n - dd.size(1), 0, max_m - dd.size(0))) for dd in d]
    )
    s = torch.LongTensor(s).to(d.device)
    cumdists, backptrs, pathmaps = batch_dynamic_time_warping(d, s)

    rets = []
    itr = zip(s, x1, x2, d, cumdists, backptrs, pathmaps)
    for (m, n), cur_x1, cur_x2, dist, cumdist, backptr, pathmap in itr:
        cumdist = cumdist[:m, :n]
        backptr = backptr[:m, :n]
        pathmap = pathmap[:m, :n]
        divisor = get_divisor(pathmap, normalize_type)

        distortion = cumdist[-1, -1] / divisor
        ret = distortion, (cur_x1, cur_x2, dist, cumdist, backptr, pathmap)
        rets.append(ret)
    return rets


def batch_mel_cepstral_distortion(y1, y2, sr, normalize_type="path", mfcc_fn=None):
    """
    https://arxiv.org/pdf/2011.03568.pdf

    The root mean squared error computed on 13-dimensional MFCC using DTW for
    alignment. MFCC features are computed from an 80-channel log-mel
    spectrogram using a 50ms Hann window and hop of 12.5ms.

    y1: list of waveforms
    y2: list of waveforms
    sr: sampling rate
    """

    try:
        import torchaudio
    except ImportError:
        raise ImportError("Please install torchaudio: pip install torchaudio")

    if mfcc_fn is None or mfcc_fn.sample_rate != sr:
        melkwargs = {
            "n_fft": int(0.05 * sr),
            "win_length": int(0.05 * sr),
            "hop_length": int(0.0125 * sr),
            "f_min": 20,
            "n_mels": 80,
            "window_fn": torch.hann_window,
        }
        mfcc_fn = torchaudio.transforms.MFCC(
            sr, n_mfcc=13, log_mels=True, melkwargs=melkwargs
        ).to(y1[0].device)
    return batch_compute_distortion(
        y1,
        y2,
        sr,
        lambda y: mfcc_fn(y).transpose(-1, -2),
        compute_rms_dist,
        normalize_type,
    )