Spaces:
Running
Running
File size: 39,618 Bytes
6a62ffb ef707e4 6a62ffb ef707e4 6a62ffb ef707e4 6a62ffb ef707e4 6a62ffb ef707e4 6a62ffb ef707e4 6a62ffb ef707e4 6a62ffb ef707e4 6a62ffb ef707e4 6a62ffb ef707e4 6a62ffb ef707e4 6a62ffb ef707e4 6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 |
import argparse
import base64
import gc
import hashlib
import os
import secrets
import sys
import time
import unicodedata
from functools import wraps
from io import BytesIO
from random import randint
import markdown
import torch
import webuiapi
from colorama import Fore, Style
from colorama import init as colorama_init
from flask import (Flask, Response, abort, jsonify, render_template_string,
request, send_file, send_from_directory)
from flask_compress import Compress
from flask_cors import CORS
from PIL import Image
from transformers import (AutoModelForCausalLM, AutoModelForSeq2SeqLM,
AutoProcessor, AutoTokenizer,
BlipForConditionalGeneration, pipeline)
from constants import *
colorama_init()
if sys.hexversion < 0x030b0000:
print(f"{Fore.BLUE}{Style.BRIGHT}Python 3.11 or newer is recommended to run this program.{Style.RESET_ALL}")
time.sleep(2)
class SplitArgs(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
setattr(
namespace, self.dest, values.replace('"', "").replace("'", "").split(",")
)
#Setting Root Folders for Silero Generations so it is compatible with STSL, should not effect regular runs. - Rolyat
parent_dir = os.path.dirname(os.path.abspath(__file__))
SILERO_SAMPLES_PATH = os.path.join(parent_dir, "tts_samples")
SILERO_SAMPLE_TEXT = os.path.join(parent_dir)
# Create directories if they don't exist
if not os.path.exists(SILERO_SAMPLES_PATH):
os.makedirs(SILERO_SAMPLES_PATH)
if not os.path.exists(SILERO_SAMPLE_TEXT):
os.makedirs(SILERO_SAMPLE_TEXT)
# Script arguments
parser = argparse.ArgumentParser(
prog="SillyTavern Extras", description="Web API for transformers models"
)
parser.add_argument(
"--port", type=int, help="Specify the port on which the application is hosted"
)
parser.add_argument(
"--listen", action="store_true", help="Host the app on the local network"
)
parser.add_argument(
"--share", action="store_true", help="Share the app on CloudFlare tunnel"
)
parser.add_argument("--cpu", action="store_true", help="Run the models on the CPU")
parser.add_argument("--cuda", action="store_false", dest="cpu", help="Run the models on the GPU")
parser.add_argument("--cuda-device", help="Specify the CUDA device to use")
parser.add_argument("--mps", "--apple", "--m1", "--m2", action="store_false", dest="cpu", help="Run the models on Apple Silicon")
parser.set_defaults(cpu=True)
parser.add_argument("--summarization-model", help="Load a custom summarization model")
parser.add_argument(
"--classification-model", help="Load a custom text classification model"
)
parser.add_argument("--captioning-model", help="Load a custom captioning model")
parser.add_argument("--embedding-model", help="Load a custom text embedding model")
parser.add_argument("--chroma-host", help="Host IP for a remote ChromaDB instance")
parser.add_argument("--chroma-port", help="HTTP port for a remote ChromaDB instance (defaults to 8000)")
parser.add_argument("--chroma-folder", help="Path for chromadb persistence folder", default='.chroma_db')
parser.add_argument('--chroma-persist', help="ChromaDB persistence", default=True, action=argparse.BooleanOptionalAction)
parser.add_argument(
"--secure", action="store_true", help="Enforces the use of an API key"
)
parser.add_argument("--talkinghead-gpu", action="store_true", help="Run the talkinghead animation on the GPU (CPU is default)")
parser.add_argument("--coqui-gpu", action="store_true", help="Run the voice models on the GPU (CPU is default)")
parser.add_argument("--coqui-models", help="Install given Coqui-api TTS model at launch (comma separated list, last one will be loaded at start)")
parser.add_argument("--max-content-length", help="Set the max")
parser.add_argument("--rvc-save-file", action="store_true", help="Save the last rvc input/output audio file into data/tmp/ folder (for research)")
parser.add_argument("--stt-vosk-model-path", help="Load a custom vosk speech-to-text model")
parser.add_argument("--stt-whisper-model-path", help="Load a custom vosk speech-to-text model")
sd_group = parser.add_mutually_exclusive_group()
local_sd = parser.add_argument_group("sd-local")
local_sd.add_argument("--sd-model", help="Load a custom SD image generation model")
local_sd.add_argument("--sd-cpu", help="Force the SD pipeline to run on the CPU", action="store_true")
remote_sd = parser.add_argument_group("sd-remote")
remote_sd.add_argument(
"--sd-remote", action="store_true", help="Use a remote backend for SD"
)
remote_sd.add_argument(
"--sd-remote-host", type=str, help="Specify the host of the remote SD backend"
)
remote_sd.add_argument(
"--sd-remote-port", type=int, help="Specify the port of the remote SD backend"
)
remote_sd.add_argument(
"--sd-remote-ssl", action="store_true", help="Use SSL for the remote SD backend"
)
remote_sd.add_argument(
"--sd-remote-auth",
type=str,
help="Specify the username:password for the remote SD backend (if required)",
)
parser.add_argument(
"--enable-modules",
action=SplitArgs,
default=[],
help="Override a list of enabled modules",
)
args = parser.parse_args()
# [HF, Huggingface] Set port to 7860, set host to remote.
port = 7860
host = "0.0.0.0"
summarization_model = (
args.summarization_model
if args.summarization_model
else DEFAULT_SUMMARIZATION_MODEL
)
classification_model = (
args.classification_model
if args.classification_model
else DEFAULT_CLASSIFICATION_MODEL
)
captioning_model = (
args.captioning_model if args.captioning_model else DEFAULT_CAPTIONING_MODEL
)
embedding_model = (
args.embedding_model if args.embedding_model else DEFAULT_EMBEDDING_MODEL
)
sd_use_remote = False if args.sd_model else True
sd_model = args.sd_model if args.sd_model else DEFAULT_SD_MODEL
sd_remote_host = args.sd_remote_host if args.sd_remote_host else DEFAULT_REMOTE_SD_HOST
sd_remote_port = args.sd_remote_port if args.sd_remote_port else DEFAULT_REMOTE_SD_PORT
sd_remote_ssl = args.sd_remote_ssl
sd_remote_auth = args.sd_remote_auth
modules = (
args.enable_modules if args.enable_modules and len(args.enable_modules) > 0 else []
)
if len(modules) == 0:
print(
f"{Fore.RED}{Style.BRIGHT}You did not select any modules to run! Choose them by adding an --enable-modules option"
)
print(f"Example: --enable-modules=caption,summarize{Style.RESET_ALL}")
# Models init
cuda_device = DEFAULT_CUDA_DEVICE if not args.cuda_device else args.cuda_device
device_string = cuda_device if torch.cuda.is_available() and not args.cpu else 'mps' if torch.backends.mps.is_available() and not args.cpu else 'cpu'
device = torch.device(device_string)
torch_dtype = torch.float32 if device_string != cuda_device else torch.float16
if not torch.cuda.is_available() and not args.cpu:
print(f"{Fore.YELLOW}{Style.BRIGHT}torch-cuda is not supported on this device.{Style.RESET_ALL}")
if not torch.backends.mps.is_available() and not args.cpu:
print(f"{Fore.YELLOW}{Style.BRIGHT}torch-mps is not supported on this device.{Style.RESET_ALL}")
print(f"{Fore.GREEN}{Style.BRIGHT}Using torch device: {device_string}{Style.RESET_ALL}")
if "talkinghead" in modules:
import sys
import threading
mode = "cuda" if args.talkinghead_gpu else "cpu"
print("Initializing talkinghead pipeline in " + mode + " mode....")
talkinghead_path = os.path.abspath(os.path.join(os.getcwd(), "talkinghead"))
sys.path.append(talkinghead_path) # Add the path to the 'tha3' module to the sys.path list
try:
import talkinghead.tha3.app.app as talkinghead
from talkinghead import *
def launch_talkinghead_gui():
talkinghead.launch_gui(mode, "separable_float")
#choices=['standard_float', 'separable_float', 'standard_half', 'separable_half'],
#choices='The device to use for PyTorch ("cuda" for GPU, "cpu" for CPU).'
talkinghead_thread = threading.Thread(target=launch_talkinghead_gui)
talkinghead_thread.daemon = True # Set the thread as a daemon thread
talkinghead_thread.start()
except ModuleNotFoundError:
print("Error: Could not import the 'talkinghead' module.")
if "caption" in modules:
print("Initializing an image captioning model...")
captioning_processor = AutoProcessor.from_pretrained(captioning_model)
if "blip" in captioning_model:
captioning_transformer = BlipForConditionalGeneration.from_pretrained(
captioning_model, torch_dtype=torch_dtype
).to(device)
else:
captioning_transformer = AutoModelForCausalLM.from_pretrained(
captioning_model, torch_dtype=torch_dtype
).to(device)
if "summarize" in modules:
print("Initializing a text summarization model...")
summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model)
summarization_transformer = AutoModelForSeq2SeqLM.from_pretrained(
summarization_model, torch_dtype=torch_dtype
).to(device)
if "sd" in modules and not sd_use_remote:
from diffusers import (EulerAncestralDiscreteScheduler,
StableDiffusionPipeline)
print("Initializing Stable Diffusion pipeline...")
sd_device_string = cuda_device if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
sd_device = torch.device(sd_device_string)
sd_torch_dtype = torch.float32 if sd_device_string != cuda_device else torch.float16
sd_pipe = StableDiffusionPipeline.from_pretrained(
sd_model, custom_pipeline="lpw_stable_diffusion", torch_dtype=sd_torch_dtype
).to(sd_device)
sd_pipe.safety_checker = lambda images, clip_input: (images, False)
sd_pipe.enable_attention_slicing()
# pipe.scheduler = KarrasVeScheduler.from_config(pipe.scheduler.config)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
sd_pipe.scheduler.config
)
elif "sd" in modules and sd_use_remote:
print("Initializing Stable Diffusion connection")
try:
sd_remote = webuiapi.WebUIApi(
host=sd_remote_host, port=sd_remote_port, use_https=sd_remote_ssl
)
if sd_remote_auth:
username, password = sd_remote_auth.split(":")
sd_remote.set_auth(username, password)
sd_remote.util_wait_for_ready()
except Exception as e:
# remote sd from modules
print(
f"{Fore.RED}{Style.BRIGHT}Could not connect to remote SD backend at http{'s' if sd_remote_ssl else ''}://{sd_remote_host}:{sd_remote_port}! Disabling SD module...{Style.RESET_ALL}"
)
modules.remove("sd")
if "tts" in modules:
print("tts module is deprecated. Please use silero-tts instead.")
modules.remove("tts")
modules.append("silero-tts")
if "silero-tts" in modules:
if not os.path.exists(SILERO_SAMPLES_PATH):
os.makedirs(SILERO_SAMPLES_PATH)
print("Initializing Silero TTS server")
from silero_api_server import tts
tts_service = tts.SileroTtsService(SILERO_SAMPLES_PATH)
if len(os.listdir(SILERO_SAMPLES_PATH)) == 0:
print("Generating Silero TTS samples...")
tts_service.update_sample_text(SILERO_SAMPLE_TEXT)
tts_service.generate_samples()
if "edge-tts" in modules:
print("Initializing Edge TTS client")
import tts_edge as edge
if "chromadb" in modules:
print("Initializing ChromaDB")
import chromadb
import posthog
from chromadb.config import Settings
from sentence_transformers import SentenceTransformer
# Assume that the user wants in-memory unless a host is specified
# Also disable chromadb telemetry
posthog.capture = lambda *args, **kwargs: None
if args.chroma_host is None:
if args.chroma_persist:
chromadb_client = chromadb.PersistentClient(path=args.chroma_folder, settings=Settings(anonymized_telemetry=False))
print(f"ChromaDB is running in-memory with persistence. Persistence is stored in {args.chroma_folder}. Can be cleared by deleting the folder or purging db.")
else:
chromadb_client = chromadb.EphemeralClient(Settings(anonymized_telemetry=False))
print(f"ChromaDB is running in-memory without persistence.")
else:
chroma_port=(
args.chroma_port if args.chroma_port else DEFAULT_CHROMA_PORT
)
chromadb_client = chromadb.HttpClient(host=args.chroma_host, port=chroma_port, settings=Settings(anonymized_telemetry=False))
print(f"ChromaDB is remotely configured at {args.chroma_host}:{chroma_port}")
chromadb_embedder = SentenceTransformer(embedding_model, device=device_string)
chromadb_embed_fn = lambda *args, **kwargs: chromadb_embedder.encode(*args, **kwargs).tolist()
# Check if the db is connected and running, otherwise tell the user
try:
chromadb_client.heartbeat()
print("Successfully pinged ChromaDB! Your client is successfully connected.")
except:
print("Could not ping ChromaDB! If you are running remotely, please check your host and port!")
# Flask init
app = Flask(__name__)
CORS(app) # allow cross-domain requests
Compress(app) # compress responses
app.config["MAX_CONTENT_LENGTH"] = 500 * 1024 * 1024
max_content_length = (
args.max_content_length
if args.max_content_length
else None)
if max_content_length is not None:
print("Setting MAX_CONTENT_LENGTH to",max_content_length,"Mb")
app.config["MAX_CONTENT_LENGTH"] = int(max_content_length) * 1024 * 1024
if "classify" in modules:
import modules.classify.classify_module as classify_module
classify_module.init_text_emotion_classifier(classification_model, device, torch_dtype)
if "vosk-stt" in modules:
print("Initializing Vosk speech-recognition (from ST request file)")
vosk_model_path = (
args.stt_vosk_model_path
if args.stt_vosk_model_path
else None)
import modules.speech_recognition.vosk_module as vosk_module
vosk_module.model = vosk_module.load_model(file_path=vosk_model_path)
app.add_url_rule("/api/speech-recognition/vosk/process-audio", view_func=vosk_module.process_audio, methods=["POST"])
if "whisper-stt" in modules:
print("Initializing Whisper speech-recognition (from ST request file)")
whisper_model_path = (
args.stt_whisper_model_path
if args.stt_whisper_model_path
else None)
import modules.speech_recognition.whisper_module as whisper_module
whisper_module.model = whisper_module.load_model(file_path=whisper_model_path)
app.add_url_rule("/api/speech-recognition/whisper/process-audio", view_func=whisper_module.process_audio, methods=["POST"])
if "streaming-stt" in modules:
print("Initializing vosk/whisper speech-recognition (from extras server microphone)")
whisper_model_path = (
args.stt_whisper_model_path
if args.stt_whisper_model_path
else None)
import modules.speech_recognition.streaming_module as streaming_module
streaming_module.whisper_model, streaming_module.vosk_model = streaming_module.load_model(file_path=whisper_model_path)
app.add_url_rule("/api/speech-recognition/streaming/record-and-transcript", view_func=streaming_module.record_and_transcript, methods=["POST"])
if "rvc" in modules:
print("Initializing RVC voice conversion (from ST request file)")
print("Increasing server upload limit")
rvc_save_file = (
args.rvc_save_file
if args.rvc_save_file
else False)
if rvc_save_file:
print("RVC saving file option detected, input/output audio will be savec into data/tmp/ folder")
import sys
sys.path.insert(0,'modules/voice_conversion')
import modules.voice_conversion.rvc_module as rvc_module
rvc_module.save_file = rvc_save_file
if "classify" in modules:
rvc_module.classification_mode = True
rvc_module.fix_model_install()
app.add_url_rule("/api/voice-conversion/rvc/get-models-list", view_func=rvc_module.rvc_get_models_list, methods=["POST"])
app.add_url_rule("/api/voice-conversion/rvc/upload-models", view_func=rvc_module.rvc_upload_models, methods=["POST"])
app.add_url_rule("/api/voice-conversion/rvc/process-audio", view_func=rvc_module.rvc_process_audio, methods=["POST"])
if "coqui-tts" in modules:
mode = "GPU" if args.coqui_gpu else "CPU"
print("Initializing Coqui TTS client in " + mode + " mode")
import modules.text_to_speech.coqui.coqui_module as coqui_module
if mode == "GPU":
coqui_module.gpu_mode = True
coqui_models = (
args.coqui_models
if args.coqui_models
else None
)
if coqui_models is not None:
coqui_models = coqui_models.split(",")
for i in coqui_models:
if not coqui_module.install_model(i):
raise ValueError("Coqui model loading failed, most likely a wrong model name in --coqui-models argument, check log above to see which one")
# Coqui-api models
app.add_url_rule("/api/text-to-speech/coqui/coqui-api/check-model-state", view_func=coqui_module.coqui_check_model_state, methods=["POST"])
app.add_url_rule("/api/text-to-speech/coqui/coqui-api/install-model", view_func=coqui_module.coqui_install_model, methods=["POST"])
# Users models
app.add_url_rule("/api/text-to-speech/coqui/local/get-models", view_func=coqui_module.coqui_get_local_models, methods=["POST"])
# Handle both coqui-api/users models
app.add_url_rule("/api/text-to-speech/coqui/generate-tts", view_func=coqui_module.coqui_generate_tts, methods=["POST"])
def require_module(name):
def wrapper(fn):
@wraps(fn)
def decorated_view(*args, **kwargs):
if name not in modules:
abort(403, "Module is disabled by config")
return fn(*args, **kwargs)
return decorated_view
return wrapper
# AI stuff
def classify_text(text: str) -> list:
return classify_module.classify_text_emotion(text)
def caption_image(raw_image: Image, max_new_tokens: int = 20) -> str:
inputs = captioning_processor(raw_image.convert("RGB"), return_tensors="pt").to(
device, torch_dtype
)
outputs = captioning_transformer.generate(**inputs, max_new_tokens=max_new_tokens)
caption = captioning_processor.decode(outputs[0], skip_special_tokens=True)
return caption
def summarize_chunks(text: str, params: dict) -> str:
try:
return summarize(text, params)
except IndexError:
print(
"Sequence length too large for model, cutting text in half and calling again"
)
new_params = params.copy()
new_params["max_length"] = new_params["max_length"] // 2
new_params["min_length"] = new_params["min_length"] // 2
return summarize_chunks(
text[: (len(text) // 2)], new_params
) + summarize_chunks(text[(len(text) // 2) :], new_params)
def summarize(text: str, params: dict) -> str:
# Tokenize input
inputs = summarization_tokenizer(text, return_tensors="pt").to(device)
token_count = len(inputs[0])
bad_words_ids = [
summarization_tokenizer(bad_word, add_special_tokens=False).input_ids
for bad_word in params["bad_words"]
]
summary_ids = summarization_transformer.generate(
inputs["input_ids"],
num_beams=2,
max_new_tokens=max(token_count, int(params["max_length"])),
min_new_tokens=min(token_count, int(params["min_length"])),
repetition_penalty=float(params["repetition_penalty"]),
temperature=float(params["temperature"]),
length_penalty=float(params["length_penalty"]),
bad_words_ids=bad_words_ids,
)
summary = summarization_tokenizer.batch_decode(
summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)[0]
summary = normalize_string(summary)
return summary
def normalize_string(input: str) -> str:
output = " ".join(unicodedata.normalize("NFKC", input).strip().split())
return output
def generate_image(data: dict) -> Image:
prompt = normalize_string(f'{data["prompt_prefix"]} {data["prompt"]}')
if sd_use_remote:
image = sd_remote.txt2img(
prompt=prompt,
negative_prompt=data["negative_prompt"],
sampler_name=data["sampler"],
steps=data["steps"],
cfg_scale=data["scale"],
width=data["width"],
height=data["height"],
restore_faces=data["restore_faces"],
enable_hr=data["enable_hr"],
save_images=True,
send_images=True,
do_not_save_grid=False,
do_not_save_samples=False,
).image
else:
image = sd_pipe(
prompt=prompt,
negative_prompt=data["negative_prompt"],
num_inference_steps=data["steps"],
guidance_scale=data["scale"],
width=data["width"],
height=data["height"],
).images[0]
image.save("./debug.png")
return image
def image_to_base64(image: Image, quality: int = 75) -> str:
buffer = BytesIO()
image.convert("RGB")
image.save(buffer, format="JPEG", quality=quality)
img_str = base64.b64encode(buffer.getvalue()).decode("utf-8")
return img_str
ignore_auth = []
# [HF, Huggingface] Get password instead of text file.
api_key = os.environ.get("password")
def is_authorize_ignored(request):
view_func = app.view_functions.get(request.endpoint)
if view_func is not None:
if view_func in ignore_auth:
return True
return False
@app.before_request
def before_request():
# Request time measuring
request.start_time = time.time()
# Checks if an API key is present and valid, otherwise return unauthorized
# The options check is required so CORS doesn't get angry
try:
if request.method != 'OPTIONS' and is_authorize_ignored(request) == False and getattr(request.authorization, 'token', '') != api_key:
print(f"WARNING: Unauthorized API key access from {request.remote_addr}")
if request.method == 'POST':
print(f"Incoming POST request with {request.headers.get('Authorization')}")
response = jsonify({ 'error': '401: Invalid API key' })
response.status_code = 401
return "https://(hf_name)-(space_name).hf.space/"
except Exception as e:
print(f"API key check error: {e}")
return "https://(hf_name)-(space_name).hf.space/"
@app.after_request
def after_request(response):
duration = time.time() - request.start_time
response.headers["X-Request-Duration"] = str(duration)
return response
@app.route("/", methods=["GET"])
def index():
with open("./README.md", "r", encoding="utf8") as f:
content = f.read()
return render_template_string(markdown.markdown(content, extensions=["tables"]))
@app.route("/api/extensions", methods=["GET"])
def get_extensions():
extensions = dict(
{
"extensions": [
{
"name": "not-supported",
"metadata": {
"display_name": """<span style="white-space:break-spaces;">Extensions serving using Extensions API is no longer supported. Please update the mod from: <a href="https://github.com/Cohee1207/SillyTavern">https://github.com/Cohee1207/SillyTavern</a></span>""",
"requires": [],
"assets": [],
},
}
]
}
)
return jsonify(extensions)
@app.route("/api/caption", methods=["POST"])
@require_module("caption")
def api_caption():
data = request.get_json()
if "image" not in data or not isinstance(data["image"], str):
abort(400, '"image" is required')
image = Image.open(BytesIO(base64.b64decode(data["image"])))
image = image.convert("RGB")
image.thumbnail((512, 512))
caption = caption_image(image)
thumbnail = image_to_base64(image)
print("Caption:", caption, sep="\n")
gc.collect()
return jsonify({"caption": caption, "thumbnail": thumbnail})
@app.route("/api/summarize", methods=["POST"])
@require_module("summarize")
def api_summarize():
data = request.get_json()
if "text" not in data or not isinstance(data["text"], str):
abort(400, '"text" is required')
params = DEFAULT_SUMMARIZE_PARAMS.copy()
if "params" in data and isinstance(data["params"], dict):
params.update(data["params"])
print("Summary input:", data["text"], sep="\n")
summary = summarize_chunks(data["text"], params)
print("Summary output:", summary, sep="\n")
gc.collect()
return jsonify({"summary": summary})
@app.route("/api/classify", methods=["POST"])
@require_module("classify")
def api_classify():
data = request.get_json()
if "text" not in data or not isinstance(data["text"], str):
abort(400, '"text" is required')
print("Classification input:", data["text"], sep="\n")
classification = classify_text(data["text"])
print("Classification output:", classification, sep="\n")
gc.collect()
if "talkinghead" in modules: #send emotion to talkinghead
talkinghead.setEmotion(classification)
return jsonify({"classification": classification})
@app.route("/api/classify/labels", methods=["GET"])
@require_module("classify")
def api_classify_labels():
classification = classify_text("")
labels = [x["label"] for x in classification]
if "talkinghead" in modules:
labels.append('talkinghead') # Add 'talkinghead' to the labels list
return jsonify({"labels": labels})
@app.route("/api/talkinghead/load", methods=["POST"])
def live_load():
file = request.files['file']
# convert stream to bytes and pass to talkinghead_load
return talkinghead.talkinghead_load_file(file.stream)
@app.route('/api/talkinghead/unload')
def live_unload():
return talkinghead.unload()
@app.route('/api/talkinghead/start_talking')
def start_talking():
return talkinghead.start_talking()
@app.route('/api/talkinghead/stop_talking')
def stop_talking():
return talkinghead.stop_talking()
@app.route('/api/talkinghead/result_feed')
def result_feed():
return talkinghead.result_feed()
@app.route("/api/image", methods=["POST"])
@require_module("sd")
def api_image():
required_fields = {
"prompt": str,
}
optional_fields = {
"steps": 30,
"scale": 6,
"sampler": "DDIM",
"width": 512,
"height": 512,
"restore_faces": False,
"enable_hr": False,
"prompt_prefix": PROMPT_PREFIX,
"negative_prompt": NEGATIVE_PROMPT,
}
data = request.get_json()
# Check required fields
for field, field_type in required_fields.items():
if field not in data or not isinstance(data[field], field_type):
abort(400, f'"{field}" is required')
# Set optional fields to default values if not provided
for field, default_value in optional_fields.items():
type_match = (
(int, float)
if isinstance(default_value, (int, float))
else type(default_value)
)
if field not in data or not isinstance(data[field], type_match):
data[field] = default_value
try:
print("SD inputs:", data, sep="\n")
image = generate_image(data)
base64image = image_to_base64(image, quality=90)
return jsonify({"image": base64image})
except RuntimeError as e:
abort(400, str(e))
@app.route("/api/image/model", methods=["POST"])
@require_module("sd")
def api_image_model_set():
data = request.get_json()
if not sd_use_remote:
abort(400, "Changing model for local sd is not supported.")
if "model" not in data or not isinstance(data["model"], str):
abort(400, '"model" is required')
old_model = sd_remote.util_get_current_model()
sd_remote.util_set_model(data["model"], find_closest=False)
# sd_remote.util_set_model(data['model'])
sd_remote.util_wait_for_ready()
new_model = sd_remote.util_get_current_model()
return jsonify({"previous_model": old_model, "current_model": new_model})
@app.route("/api/image/model", methods=["GET"])
@require_module("sd")
def api_image_model_get():
model = sd_model
if sd_use_remote:
model = sd_remote.util_get_current_model()
return jsonify({"model": model})
@app.route("/api/image/models", methods=["GET"])
@require_module("sd")
def api_image_models():
models = [sd_model]
if sd_use_remote:
models = sd_remote.util_get_model_names()
return jsonify({"models": models})
@app.route("/api/image/samplers", methods=["GET"])
@require_module("sd")
def api_image_samplers():
samplers = ["Euler a"]
if sd_use_remote:
samplers = [sampler["name"] for sampler in sd_remote.get_samplers()]
return jsonify({"samplers": samplers})
@app.route("/api/modules", methods=["GET"])
def get_modules():
return jsonify({"modules": modules})
@app.route("/api/tts/speakers", methods=["GET"])
@require_module("silero-tts")
def tts_speakers():
voices = [
{
"name": speaker,
"voice_id": speaker,
"preview_url": f"{str(request.url_root)}api/tts/sample/{speaker}",
}
for speaker in tts_service.get_speakers()
]
return jsonify(voices)
# Added fix for Silero not working as new files were unable to be created if one already existed. - Rolyat 7/7/23
@app.route("/api/tts/generate", methods=["POST"])
@require_module("silero-tts")
def tts_generate():
voice = request.get_json()
if "text" not in voice or not isinstance(voice["text"], str):
abort(400, '"text" is required')
if "speaker" not in voice or not isinstance(voice["speaker"], str):
abort(400, '"speaker" is required')
# Remove asterisks
voice["text"] = voice["text"].replace("*", "")
try:
# Remove the destination file if it already exists
if os.path.exists('test.wav'):
os.remove('test.wav')
audio = tts_service.generate(voice["speaker"], voice["text"])
audio_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.path.basename(audio))
os.rename(audio, audio_file_path)
return send_file(audio_file_path, mimetype="audio/x-wav")
except Exception as e:
print(e)
abort(500, voice["speaker"])
@app.route("/api/tts/sample/<speaker>", methods=["GET"])
@require_module("silero-tts")
def tts_play_sample(speaker: str):
return send_from_directory(SILERO_SAMPLES_PATH, f"{speaker}.wav")
@app.route("/api/edge-tts/list", methods=["GET"])
@require_module("edge-tts")
def edge_tts_list():
voices = edge.get_voices()
return jsonify(voices)
@app.route("/api/edge-tts/generate", methods=["POST"])
@require_module("edge-tts")
def edge_tts_generate():
data = request.get_json()
if "text" not in data or not isinstance(data["text"], str):
abort(400, '"text" is required')
if "voice" not in data or not isinstance(data["voice"], str):
abort(400, '"voice" is required')
if "rate" in data and isinstance(data['rate'], int):
rate = data['rate']
else:
rate = 0
# Remove asterisks
data["text"] = data["text"].replace("*", "")
try:
audio = edge.generate_audio(text=data["text"], voice=data["voice"], rate=rate)
return Response(audio, mimetype="audio/mpeg")
except Exception as e:
print(e)
abort(500, data["voice"])
@app.route("/api/chromadb", methods=["POST"])
@require_module("chromadb")
def chromadb_add_messages():
data = request.get_json()
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
if "messages" not in data or not isinstance(data["messages"], list):
abort(400, '"messages" is required')
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
collection = chromadb_client.get_or_create_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
documents = [m["content"] for m in data["messages"]]
ids = [m["id"] for m in data["messages"]]
metadatas = [
{"role": m["role"], "date": m["date"], "meta": m.get("meta", "")}
for m in data["messages"]
]
collection.upsert(
ids=ids,
documents=documents,
metadatas=metadatas,
)
return jsonify({"count": len(ids)})
@app.route("/api/chromadb/purge", methods=["POST"])
@require_module("chromadb")
def chromadb_purge():
data = request.get_json()
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
collection = chromadb_client.get_or_create_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
count = collection.count()
collection.delete()
print("ChromaDB embeddings deleted", count)
return 'Ok', 200
@app.route("/api/chromadb/query", methods=["POST"])
@require_module("chromadb")
def chromadb_query():
data = request.get_json()
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
if "query" not in data or not isinstance(data["query"], str):
abort(400, '"query" is required')
if "n_results" not in data or not isinstance(data["n_results"], int):
n_results = 1
else:
n_results = data["n_results"]
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
collection = chromadb_client.get_or_create_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
if collection.count() == 0:
print(f"Queried empty/missing collection for {repr(data['chat_id'])}.")
return jsonify([])
n_results = min(collection.count(), n_results)
query_result = collection.query(
query_texts=[data["query"]],
n_results=n_results,
)
documents = query_result["documents"][0]
ids = query_result["ids"][0]
metadatas = query_result["metadatas"][0]
distances = query_result["distances"][0]
messages = [
{
"id": ids[i],
"date": metadatas[i]["date"],
"role": metadatas[i]["role"],
"meta": metadatas[i]["meta"],
"content": documents[i],
"distance": distances[i],
}
for i in range(len(ids))
]
return jsonify(messages)
@app.route("/api/chromadb/multiquery", methods=["POST"])
@require_module("chromadb")
def chromadb_multiquery():
data = request.get_json()
if "chat_list" not in data or not isinstance(data["chat_list"], list):
abort(400, '"chat_list" is required and should be a list')
if "query" not in data or not isinstance(data["query"], str):
abort(400, '"query" is required')
if "n_results" not in data or not isinstance(data["n_results"], int):
n_results = 1
else:
n_results = data["n_results"]
messages = []
for chat_id in data["chat_list"]:
if not isinstance(chat_id, str):
continue
try:
chat_id_md5 = hashlib.md5(chat_id.encode()).hexdigest()
collection = chromadb_client.get_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
# Skip this chat if the collection is empty
if collection.count() == 0:
continue
n_results_per_chat = min(collection.count(), n_results)
query_result = collection.query(
query_texts=[data["query"]],
n_results=n_results_per_chat,
)
documents = query_result["documents"][0]
ids = query_result["ids"][0]
metadatas = query_result["metadatas"][0]
distances = query_result["distances"][0]
chat_messages = [
{
"id": ids[i],
"date": metadatas[i]["date"],
"role": metadatas[i]["role"],
"meta": metadatas[i]["meta"],
"content": documents[i],
"distance": distances[i],
}
for i in range(len(ids))
]
messages.extend(chat_messages)
except Exception as e:
print(e)
#remove duplicate msgs, filter down to the right number
seen = set()
messages = [d for d in messages if not (d['content'] in seen or seen.add(d['content']))]
messages = sorted(messages, key=lambda x: x['distance'])[0:n_results]
return jsonify(messages)
@app.route("/api/chromadb/export", methods=["POST"])
@require_module("chromadb")
def chromadb_export():
data = request.get_json()
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
try:
collection = chromadb_client.get_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
except Exception as e:
print(e)
abort(400, "Chat collection not found in chromadb")
collection_content = collection.get()
documents = collection_content.get('documents', [])
ids = collection_content.get('ids', [])
metadatas = collection_content.get('metadatas', [])
unsorted_content = [
{
"id": ids[i],
"metadata": metadatas[i],
"document": documents[i],
}
for i in range(len(ids))
]
sorted_content = sorted(unsorted_content, key=lambda x: x['metadata']['date'])
export = {
"chat_id": data["chat_id"],
"content": sorted_content
}
return jsonify(export)
@app.route("/api/chromadb/import", methods=["POST"])
@require_module("chromadb")
def chromadb_import():
data = request.get_json()
content = data['content']
if "chat_id" not in data or not isinstance(data["chat_id"], str):
abort(400, '"chat_id" is required')
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
collection = chromadb_client.get_or_create_collection(
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
)
documents = [item['document'] for item in content]
metadatas = [item['metadata'] for item in content]
ids = [item['id'] for item in content]
collection.upsert(documents=documents, metadatas=metadatas, ids=ids)
print(f"Imported {len(ids)} (total {collection.count()}) content entries into {repr(data['chat_id'])}")
return jsonify({"count": len(ids)})
if args.share:
import inspect
from flask_cloudflared import _run_cloudflared
sig = inspect.signature(_run_cloudflared)
sum = sum(
1
for param in sig.parameters.values()
if param.kind == param.POSITIONAL_OR_KEYWORD
)
if sum > 1:
metrics_port = randint(8100, 9000)
cloudflare = _run_cloudflared(port, metrics_port)
else:
cloudflare = _run_cloudflared(port)
print(f"{Fore.GREEN}{Style.NORMAL}Running on: {cloudflare}{Style.RESET_ALL}")
ignore_auth.append(tts_play_sample)
ignore_auth.append(result_feed)
app.run(host=host, port=port)
|