TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import typing as tp
from abc import ABC, abstractmethod
from collections import Counter
from dataclasses import dataclass
from multiprocessing import Pool
import torch
from fairseq.data import Dictionary, indexed_dataset
from fairseq.file_chunker_utils import Chunker, find_offsets
from fairseq.file_io import PathManager
from fairseq.tokenizer import tokenize_line
logger = logging.getLogger("binarizer")
@dataclass
class BinarizeSummary:
"""
Keep track of what's going on in the binarizer
"""
num_seq: int = 0
replaced: tp.Optional[Counter] = None
num_tok: int = 0
@property
def num_replaced(self) -> int:
if self.replaced is None:
return 0
return sum(self.replaced.values())
@property
def replaced_percent(self) -> float:
return 100 * self.num_replaced / self.num_tok
def __str__(self) -> str:
base = f"{self.num_seq} sents, {self.num_tok} tokens"
if self.replaced is None:
return base
return f"{base}, {self.replaced_percent:.3}% replaced"
def merge(self, other: "BinarizeSummary"):
replaced = None
if self.replaced is not None:
replaced = self.replaced
if other.replaced is not None:
if replaced is None:
replaced = other.replaced
else:
replaced += other.replaced
self.replaced = replaced
self.num_seq += other.num_seq
self.num_tok += other.num_tok
class Binarizer(ABC):
"""
a binarizer describes how to take a string and build a tensor out of it
"""
@abstractmethod
def binarize_line(
self,
line: str,
summary: BinarizeSummary,
) -> torch.IntTensor:
...
def _worker_prefix(output_prefix: str, worker_id: int):
return f"{output_prefix}.pt{worker_id}"
class FileBinarizer:
"""
An file binarizer can take a file, tokenize it, and binarize each line to a tensor
"""
@classmethod
def multiprocess_dataset(
cls,
input_file: str,
dataset_impl: str,
binarizer: Binarizer,
output_prefix: str,
vocab_size=None,
num_workers=1,
) -> BinarizeSummary:
final_summary = BinarizeSummary()
offsets = find_offsets(input_file, num_workers)
# find_offsets returns a list of position [pos1, pos2, pos3, pos4] but we would want pairs:
# [(pos1, pos2), (pos2, pos3), (pos3, pos4)] to process the chunks with start/end info
# we zip the list with itself shifted by one to get all the pairs.
(first_chunk, *more_chunks) = zip(offsets, offsets[1:])
pool = None
if num_workers > 1:
pool = Pool(processes=num_workers - 1)
worker_results = [
pool.apply_async(
cls._binarize_chunk_and_finalize,
args=(
binarizer,
input_file,
start_offset,
end_offset,
_worker_prefix(
output_prefix,
worker_id,
),
dataset_impl,
),
kwds={
"vocab_size": vocab_size,
}
if vocab_size is not None
else {},
)
for worker_id, (start_offset, end_offset) in enumerate(
more_chunks, start=1
)
]
pool.close()
pool.join()
for r in worker_results:
summ = r.get()
final_summary.merge(summ)
# do not close the bin file as we need to merge the worker results in
final_ds, summ = cls._binarize_file_chunk(
binarizer,
input_file,
offset_start=first_chunk[0],
offset_end=first_chunk[1],
output_prefix=output_prefix,
dataset_impl=dataset_impl,
vocab_size=vocab_size if vocab_size is not None else None,
)
final_summary.merge(summ)
if num_workers > 1:
for worker_id in range(1, num_workers):
# merge the worker outputs
worker_output_prefix = _worker_prefix(
output_prefix,
worker_id,
)
final_ds.merge_file_(worker_output_prefix)
try:
os.remove(indexed_dataset.data_file_path(worker_output_prefix))
os.remove(indexed_dataset.index_file_path(worker_output_prefix))
except Exception as e:
logger.error(
f"couldn't remove {worker_output_prefix}.*", exc_info=e
)
# now we can close the file
idx_file = indexed_dataset.index_file_path(output_prefix)
final_ds.finalize(idx_file)
return final_summary
@staticmethod
def _binarize_file_chunk(
binarizer: Binarizer,
filename: str,
offset_start: int,
offset_end: int,
output_prefix: str,
dataset_impl: str,
vocab_size=None,
) -> tp.Tuple[tp.Any, BinarizeSummary]: # (dataset builder, BinarizeSummary)
"""
creates a dataset builder and append binarized items to it. This function does not
finalize the builder, this is useful if you want to do other things with your bin file
like appending/merging other files
"""
bin_file = indexed_dataset.data_file_path(output_prefix)
ds = indexed_dataset.make_builder(
bin_file,
impl=dataset_impl,
vocab_size=vocab_size,
)
summary = BinarizeSummary()
with Chunker(
PathManager.get_local_path(filename), offset_start, offset_end
) as line_iterator:
for line in line_iterator:
ds.add_item(binarizer.binarize_line(line, summary))
return ds, summary
@classmethod
def _binarize_chunk_and_finalize(
cls,
binarizer: Binarizer,
filename: str,
offset_start: int,
offset_end: int,
output_prefix: str,
dataset_impl: str,
vocab_size=None,
):
"""
same as above, but also finalizes the builder
"""
ds, summ = cls._binarize_file_chunk(
binarizer,
filename,
offset_start,
offset_end,
output_prefix,
dataset_impl,
vocab_size=vocab_size,
)
idx_file = indexed_dataset.index_file_path(output_prefix)
ds.finalize(idx_file)
return summ
class VocabularyDatasetBinarizer(Binarizer):
"""
Takes a Dictionary/Vocabulary, assign ids to each
token using the dictionary encode_line function.
"""
def __init__(
self,
dict: Dictionary,
tokenize: tp.Callable[[str], tp.List[str]] = tokenize_line,
append_eos: bool = True,
reverse_order: bool = False,
already_numberized: bool = False,
) -> None:
self.dict = dict
self.tokenize = tokenize
self.append_eos = append_eos
self.reverse_order = reverse_order
self.already_numberized = already_numberized
super().__init__()
def binarize_line(
self,
line: str,
summary: BinarizeSummary,
):
if summary.replaced is None:
summary.replaced = Counter()
def replaced_consumer(word, idx):
if idx == self.dict.unk_index and word != self.dict.unk_word:
summary.replaced.update([word])
if self.already_numberized:
id_strings = line.strip().split()
id_list = [int(id_string) for id_string in id_strings]
if self.reverse_order:
id_list.reverse()
if self.append_eos:
id_list.append(self.dict.eos())
ids = torch.IntTensor(id_list)
else:
ids = self.dict.encode_line(
line=line,
line_tokenizer=self.tokenize,
add_if_not_exist=False,
consumer=replaced_consumer,
append_eos=self.append_eos,
reverse_order=self.reverse_order,
)
summary.num_seq += 1
summary.num_tok += len(ids)
return ids
class AlignmentDatasetBinarizer(Binarizer):
"""
binarize by parsing a set of alignments and packing
them in a tensor (see utils.parse_alignment)
"""
def __init__(
self,
alignment_parser: tp.Callable[[str], torch.IntTensor],
) -> None:
super().__init__()
self.alignment_parser = alignment_parser
def binarize_line(
self,
line: str,
summary: BinarizeSummary,
):
ids = self.alignment_parser(line)
summary.num_seq += 1
summary.num_tok += len(ids)
return ids
class LegacyBinarizer:
@classmethod
def binarize(
cls,
filename: str,
dico: Dictionary,
consumer: tp.Callable[[torch.IntTensor], None],
tokenize: tp.Callable[[str], tp.List[str]] = tokenize_line,
append_eos: bool = True,
reverse_order: bool = False,
offset: int = 0,
end: int = -1,
already_numberized: bool = False,
) -> tp.Dict[str, int]:
binarizer = VocabularyDatasetBinarizer(
dict=dico,
tokenize=tokenize,
append_eos=append_eos,
reverse_order=reverse_order,
already_numberized=already_numberized,
)
return cls._consume_file(
filename,
binarizer,
consumer,
offset_start=offset,
offset_end=end,
)
@classmethod
def binarize_alignments(
cls,
filename: str,
alignment_parser: tp.Callable[[str], torch.IntTensor],
consumer: tp.Callable[[torch.IntTensor], None],
offset: int = 0,
end: int = -1,
) -> tp.Dict[str, int]:
binarizer = AlignmentDatasetBinarizer(alignment_parser)
return cls._consume_file(
filename,
binarizer,
consumer,
offset_start=offset,
offset_end=end,
)
@staticmethod
def _consume_file(
filename: str,
binarizer: Binarizer,
consumer: tp.Callable[[torch.IntTensor], None],
offset_start: int,
offset_end: int,
) -> tp.Dict[str, int]:
summary = BinarizeSummary()
with Chunker(
PathManager.get_local_path(filename), offset_start, offset_end
) as line_iterator:
for line in line_iterator:
consumer(binarizer.binarize_line(line, summary))
return {
"nseq": summary.num_seq,
"nunk": summary.num_replaced,
"ntok": summary.num_tok,
"replaced": summary.replaced,
}