Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from functools import lru_cache | |
import numpy as np | |
import torch | |
from fairseq.data import Dictionary, data_utils | |
from . import BaseWrapperDataset, LRUCacheDataset | |
class MaskTokensDataset(BaseWrapperDataset): | |
""" | |
A wrapper Dataset for masked language modeling. | |
Input items are masked according to the specified masking probability. | |
Args: | |
dataset: Dataset to wrap. | |
sizes: Sentence lengths | |
vocab: Dictionary with the vocabulary and special tokens. | |
pad_idx: Id of pad token in vocab | |
mask_idx: Id of mask token in vocab | |
return_masked_tokens: controls whether to return the non-masked tokens | |
(the default) or to return a tensor with the original masked token | |
IDs (and *pad_idx* elsewhere). The latter is useful as targets for | |
masked LM training. | |
seed: Seed for random number generator for reproducibility. | |
mask_prob: probability of replacing a token with *mask_idx*. | |
leave_unmasked_prob: probability that a masked token is unmasked. | |
random_token_prob: probability of replacing a masked token with a | |
random token from the vocabulary. | |
freq_weighted_replacement: sample random replacement words based on | |
word frequencies in the vocab. | |
mask_whole_words: only mask whole words. This should be a byte mask | |
over vocab indices, indicating whether it is the beginning of a | |
word. We will extend any mask to encompass the whole word. | |
bpe: BPE to use for whole-word masking. | |
mask_multiple_length : repeat each mask index multiple times. Default | |
value is 1. | |
mask_stdev : standard deviation of masks distribution in case of | |
multiple masking. Default value is 0. | |
""" | |
def apply_mask(cls, dataset: torch.utils.data.Dataset, *args, **kwargs): | |
"""Return the source and target datasets for masked LM training.""" | |
dataset = LRUCacheDataset(dataset) | |
return ( | |
LRUCacheDataset(cls(dataset, *args, **kwargs, return_masked_tokens=False)), | |
LRUCacheDataset(cls(dataset, *args, **kwargs, return_masked_tokens=True)), | |
) | |
def __init__( | |
self, | |
dataset: torch.utils.data.Dataset, | |
vocab: Dictionary, | |
pad_idx: int, | |
mask_idx: int, | |
return_masked_tokens: bool = False, | |
seed: int = 1, | |
mask_prob: float = 0.15, | |
leave_unmasked_prob: float = 0.1, | |
random_token_prob: float = 0.1, | |
freq_weighted_replacement: bool = False, | |
mask_whole_words: torch.Tensor = None, | |
mask_multiple_length: int = 1, | |
mask_stdev: float = 0.0, | |
): | |
assert 0.0 < mask_prob < 1.0 | |
assert 0.0 <= random_token_prob <= 1.0 | |
assert 0.0 <= leave_unmasked_prob <= 1.0 | |
assert random_token_prob + leave_unmasked_prob <= 1.0 | |
assert mask_multiple_length >= 1 | |
assert mask_stdev >= 0.0 | |
self.dataset = dataset | |
self.vocab = vocab | |
self.pad_idx = pad_idx | |
self.mask_idx = mask_idx | |
self.return_masked_tokens = return_masked_tokens | |
self.seed = seed | |
self.mask_prob = mask_prob | |
self.leave_unmasked_prob = leave_unmasked_prob | |
self.random_token_prob = random_token_prob | |
self.mask_whole_words = mask_whole_words | |
self.mask_multiple_length = mask_multiple_length | |
self.mask_stdev = mask_stdev | |
if random_token_prob > 0.0: | |
if freq_weighted_replacement: | |
weights = np.array(self.vocab.count) | |
else: | |
weights = np.ones(len(self.vocab)) | |
weights[: self.vocab.nspecial] = 0 | |
self.weights = weights / weights.sum() | |
self.epoch = 0 | |
def can_reuse_epoch_itr_across_epochs(self): | |
return True # only the noise changes, not item sizes | |
def set_epoch(self, epoch, **unused): | |
super().set_epoch(epoch) | |
self.epoch = epoch | |
def __getitem__(self, index: int): | |
return self.__getitem_cached__(self.seed, self.epoch, index) | |
def __getitem_cached__(self, seed: int, epoch: int, index: int): | |
with data_utils.numpy_seed(self.seed, self.epoch, index): | |
item = self.dataset[index] | |
sz = len(item) | |
assert ( | |
self.mask_idx not in item | |
), "Dataset contains mask_idx (={}), this is not expected!".format( | |
self.mask_idx, | |
) | |
if self.mask_whole_words is not None: | |
word_begins_mask = self.mask_whole_words.gather(0, item) | |
word_begins_idx = word_begins_mask.nonzero().view(-1) | |
sz = len(word_begins_idx) | |
words = np.split(word_begins_mask, word_begins_idx)[1:] | |
assert len(words) == sz | |
word_lens = list(map(len, words)) | |
# decide elements to mask | |
mask = np.full(sz, False) | |
num_mask = int( | |
# add a random number for probabilistic rounding | |
self.mask_prob * sz / float(self.mask_multiple_length) | |
+ np.random.rand() | |
) | |
# multiple masking as described in the vq-wav2vec paper (https://arxiv.org/abs/1910.05453) | |
mask_idc = np.random.choice(sz, num_mask, replace=False) | |
if self.mask_stdev > 0.0: | |
lengths = np.random.normal( | |
self.mask_multiple_length, self.mask_stdev, size=num_mask | |
) | |
lengths = [max(0, int(round(x))) for x in lengths] | |
mask_idc = np.asarray( | |
[ | |
mask_idc[j] + offset | |
for j in range(len(mask_idc)) | |
for offset in range(lengths[j]) | |
], | |
dtype=np.int64, | |
) | |
else: | |
mask_idc = np.concatenate( | |
[mask_idc + i for i in range(self.mask_multiple_length)] | |
) | |
mask_idc = mask_idc[mask_idc < len(mask)] | |
try: | |
mask[mask_idc] = True | |
except: # something wrong | |
print( | |
"Assigning mask indexes {} to mask {} failed!".format( | |
mask_idc, mask | |
) | |
) | |
raise | |
if self.return_masked_tokens: | |
# exit early if we're just returning the masked tokens | |
# (i.e., the targets for masked LM training) | |
if self.mask_whole_words is not None: | |
mask = np.repeat(mask, word_lens) | |
new_item = np.full(len(mask), self.pad_idx) | |
new_item[mask] = item[torch.from_numpy(mask.astype(np.uint8)) == 1] | |
return torch.from_numpy(new_item) | |
# decide unmasking and random replacement | |
rand_or_unmask_prob = self.random_token_prob + self.leave_unmasked_prob | |
if rand_or_unmask_prob > 0.0: | |
rand_or_unmask = mask & (np.random.rand(sz) < rand_or_unmask_prob) | |
if self.random_token_prob == 0.0: | |
unmask = rand_or_unmask | |
rand_mask = None | |
elif self.leave_unmasked_prob == 0.0: | |
unmask = None | |
rand_mask = rand_or_unmask | |
else: | |
unmask_prob = self.leave_unmasked_prob / rand_or_unmask_prob | |
decision = np.random.rand(sz) < unmask_prob | |
unmask = rand_or_unmask & decision | |
rand_mask = rand_or_unmask & (~decision) | |
else: | |
unmask = rand_mask = None | |
if unmask is not None: | |
mask = mask ^ unmask | |
if self.mask_whole_words is not None: | |
mask = np.repeat(mask, word_lens) | |
new_item = np.copy(item) | |
new_item[mask] = self.mask_idx | |
if rand_mask is not None: | |
num_rand = rand_mask.sum() | |
if num_rand > 0: | |
if self.mask_whole_words is not None: | |
rand_mask = np.repeat(rand_mask, word_lens) | |
num_rand = rand_mask.sum() | |
new_item[rand_mask] = np.random.choice( | |
len(self.vocab), | |
num_rand, | |
p=self.weights, | |
) | |
return torch.from_numpy(new_item) | |