Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Utilities for working with the local dataset cache. | |
This file is adapted from `AllenNLP <https://github.com/allenai/allennlp>`_. | |
and `huggingface <https://github.com/huggingface>`_. | |
""" | |
import fnmatch | |
import json | |
import logging | |
import os | |
import shutil | |
import tarfile | |
import tempfile | |
from functools import partial, wraps | |
from hashlib import sha256 | |
from io import open | |
try: | |
from torch.hub import _get_torch_home | |
torch_cache_home = _get_torch_home() | |
except ImportError: | |
torch_cache_home = os.path.expanduser( | |
os.getenv( | |
"TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch") | |
) | |
) | |
default_cache_path = os.path.join(torch_cache_home, "pytorch_fairseq") | |
try: | |
from urllib.parse import urlparse | |
except ImportError: | |
from urlparse import urlparse | |
try: | |
from pathlib import Path | |
PYTORCH_FAIRSEQ_CACHE = Path(os.getenv("PYTORCH_FAIRSEQ_CACHE", default_cache_path)) | |
except (AttributeError, ImportError): | |
PYTORCH_FAIRSEQ_CACHE = os.getenv("PYTORCH_FAIRSEQ_CACHE", default_cache_path) | |
CONFIG_NAME = "config.json" | |
WEIGHTS_NAME = "pytorch_model.bin" | |
logger = logging.getLogger(__name__) # pylint: disable=invalid-name | |
def load_archive_file(archive_file): | |
# redirect to the cache, if necessary | |
try: | |
resolved_archive_file = cached_path(archive_file, cache_dir=None) | |
except EnvironmentError: | |
logger.info( | |
"Archive name '{}' was not found in archive name list. " | |
"We assumed '{}' was a path or URL but couldn't find any file " | |
"associated to this path or URL.".format( | |
archive_file, | |
archive_file, | |
) | |
) | |
return None | |
if resolved_archive_file == archive_file: | |
logger.info("loading archive file {}".format(archive_file)) | |
else: | |
logger.info( | |
"loading archive file {} from cache at {}".format( | |
archive_file, resolved_archive_file | |
) | |
) | |
# Extract archive to temp dir and replace .tar.bz2 if necessary | |
tempdir = None | |
if not os.path.isdir(resolved_archive_file): | |
tempdir = tempfile.mkdtemp() | |
logger.info( | |
"extracting archive file {} to temp dir {}".format( | |
resolved_archive_file, tempdir | |
) | |
) | |
ext = os.path.splitext(archive_file)[1][1:] | |
with tarfile.open(resolved_archive_file, "r:" + ext) as archive: | |
top_dir = os.path.commonprefix(archive.getnames()) | |
archive.extractall(tempdir) | |
os.remove(resolved_archive_file) | |
shutil.move(os.path.join(tempdir, top_dir), resolved_archive_file) | |
shutil.rmtree(tempdir) | |
return resolved_archive_file | |
def url_to_filename(url, etag=None): | |
""" | |
Convert `url` into a hashed filename in a repeatable way. | |
If `etag` is specified, append its hash to the URL's, delimited | |
by a period. | |
""" | |
url_bytes = url.encode("utf-8") | |
url_hash = sha256(url_bytes) | |
filename = url_hash.hexdigest() | |
if etag: | |
etag_bytes = etag.encode("utf-8") | |
etag_hash = sha256(etag_bytes) | |
filename += "." + etag_hash.hexdigest() | |
return filename | |
def filename_to_url(filename, cache_dir=None): | |
""" | |
Return the url and etag (which may be ``None``) stored for `filename`. | |
Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist. | |
""" | |
if cache_dir is None: | |
cache_dir = PYTORCH_FAIRSEQ_CACHE | |
if isinstance(cache_dir, Path): | |
cache_dir = str(cache_dir) | |
cache_path = os.path.join(cache_dir, filename) | |
if not os.path.exists(cache_path): | |
raise EnvironmentError("file {} not found".format(cache_path)) | |
meta_path = cache_path + ".json" | |
if not os.path.exists(meta_path): | |
raise EnvironmentError("file {} not found".format(meta_path)) | |
with open(meta_path, encoding="utf-8") as meta_file: | |
metadata = json.load(meta_file) | |
url = metadata["url"] | |
etag = metadata["etag"] | |
return url, etag | |
def cached_path_from_pm(url_or_filename): | |
""" | |
Tries to cache the specified URL using PathManager class. | |
Returns the cached path if success otherwise failure. | |
""" | |
try: | |
from fairseq.file_io import PathManager | |
local_path = PathManager.get_local_path(url_or_filename) | |
return local_path | |
except Exception: | |
return None | |
def cached_path(url_or_filename, cache_dir=None): | |
""" | |
Given something that might be a URL (or might be a local path), | |
determine which. If it's a URL, download the file and cache it, and | |
return the path to the cached file. If it's already a local path, | |
make sure the file exists and then return the path. | |
""" | |
if cache_dir is None: | |
cache_dir = PYTORCH_FAIRSEQ_CACHE | |
if isinstance(url_or_filename, Path): | |
url_or_filename = str(url_or_filename) | |
if isinstance(cache_dir, Path): | |
cache_dir = str(cache_dir) | |
parsed = urlparse(url_or_filename) | |
if parsed.scheme in ("http", "https", "s3"): | |
# URL, so get it from the cache (downloading if necessary) | |
return get_from_cache(url_or_filename, cache_dir) | |
elif os.path.exists(url_or_filename): | |
# File, and it exists. | |
return url_or_filename | |
elif parsed.scheme == "": | |
# File, but it doesn't exist. | |
raise EnvironmentError("file {} not found".format(url_or_filename)) | |
else: | |
cached_path = cached_path_from_pm(url_or_filename) | |
if cached_path: | |
return cached_path | |
# Something unknown | |
raise ValueError( | |
"unable to parse {} as a URL or as a local path".format(url_or_filename) | |
) | |
def split_s3_path(url): | |
"""Split a full s3 path into the bucket name and path.""" | |
parsed = urlparse(url) | |
if not parsed.netloc or not parsed.path: | |
raise ValueError("bad s3 path {}".format(url)) | |
bucket_name = parsed.netloc | |
s3_path = parsed.path | |
# Remove '/' at beginning of path. | |
if s3_path.startswith("/"): | |
s3_path = s3_path[1:] | |
return bucket_name, s3_path | |
def s3_request(func): | |
""" | |
Wrapper function for s3 requests in order to create more helpful error | |
messages. | |
""" | |
def wrapper(url, *args, **kwargs): | |
from botocore.exceptions import ClientError | |
try: | |
return func(url, *args, **kwargs) | |
except ClientError as exc: | |
if int(exc.response["Error"]["Code"]) == 404: | |
raise EnvironmentError("file {} not found".format(url)) | |
else: | |
raise | |
return wrapper | |
def s3_etag(url): | |
"""Check ETag on S3 object.""" | |
import boto3 | |
s3_resource = boto3.resource("s3") | |
bucket_name, s3_path = split_s3_path(url) | |
s3_object = s3_resource.Object(bucket_name, s3_path) | |
return s3_object.e_tag | |
def s3_get(url, temp_file): | |
"""Pull a file directly from S3.""" | |
import boto3 | |
s3_resource = boto3.resource("s3") | |
bucket_name, s3_path = split_s3_path(url) | |
s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file) | |
def request_wrap_timeout(func, url): | |
import requests | |
for attempt, timeout in enumerate([10, 20, 40, 60, 60]): | |
try: | |
return func(timeout=timeout) | |
except requests.exceptions.Timeout as e: | |
logger.warning( | |
"Request for %s timed-out (attempt %d). Retrying with a timeout of %d secs", | |
url, | |
attempt, | |
timeout, | |
exc_info=e, | |
) | |
continue | |
raise RuntimeError(f"Unable to fetch file {url}") | |
def http_get(url, temp_file): | |
import requests | |
from tqdm import tqdm | |
req = request_wrap_timeout(partial(requests.get, url, stream=True), url) | |
content_length = req.headers.get("Content-Length") | |
total = int(content_length) if content_length is not None else None | |
progress = tqdm(unit="B", total=total) | |
for chunk in req.iter_content(chunk_size=1024): | |
if chunk: # filter out keep-alive new chunks | |
progress.update(len(chunk)) | |
temp_file.write(chunk) | |
progress.close() | |
def get_from_cache(url, cache_dir=None): | |
""" | |
Given a URL, look for the corresponding dataset in the local cache. | |
If it's not there, download it. Then return the path to the cached file. | |
""" | |
if cache_dir is None: | |
cache_dir = PYTORCH_FAIRSEQ_CACHE | |
if isinstance(cache_dir, Path): | |
cache_dir = str(cache_dir) | |
if not os.path.exists(cache_dir): | |
os.makedirs(cache_dir) | |
# Get eTag to add to filename, if it exists. | |
if url.startswith("s3://"): | |
etag = s3_etag(url) | |
else: | |
try: | |
import requests | |
response = request_wrap_timeout( | |
partial(requests.head, url, allow_redirects=True), url | |
) | |
if response.status_code != 200: | |
etag = None | |
else: | |
etag = response.headers.get("ETag") | |
except RuntimeError: | |
etag = None | |
filename = url_to_filename(url, etag) | |
# get cache path to put the file | |
cache_path = os.path.join(cache_dir, filename) | |
# If we don't have a connection (etag is None) and can't identify the file | |
# try to get the last downloaded one | |
if not os.path.exists(cache_path) and etag is None: | |
matching_files = fnmatch.filter(os.listdir(cache_dir), filename + ".*") | |
matching_files = list(filter(lambda s: not s.endswith(".json"), matching_files)) | |
if matching_files: | |
cache_path = os.path.join(cache_dir, matching_files[-1]) | |
if not os.path.exists(cache_path): | |
# Download to temporary file, then copy to cache dir once finished. | |
# Otherwise you get corrupt cache entries if the download gets interrupted. | |
with tempfile.NamedTemporaryFile() as temp_file: | |
logger.info("%s not found in cache, downloading to %s", url, temp_file.name) | |
# GET file object | |
if url.startswith("s3://"): | |
s3_get(url, temp_file) | |
else: | |
http_get(url, temp_file) | |
# we are copying the file before closing it, so flush to avoid truncation | |
temp_file.flush() | |
# shutil.copyfileobj() starts at the current position, so go to the start | |
temp_file.seek(0) | |
logger.info("copying %s to cache at %s", temp_file.name, cache_path) | |
with open(cache_path, "wb") as cache_file: | |
shutil.copyfileobj(temp_file, cache_file) | |
logger.info("creating metadata file for %s", cache_path) | |
meta = {"url": url, "etag": etag} | |
meta_path = cache_path + ".json" | |
with open(meta_path, "w") as meta_file: | |
output_string = json.dumps(meta) | |
meta_file.write(output_string) | |
logger.info("removing temp file %s", temp_file.name) | |
return cache_path | |
def read_set_from_file(filename): | |
""" | |
Extract a de-duped collection (set) of text from a file. | |
Expected file format is one item per line. | |
""" | |
collection = set() | |
with open(filename, "r", encoding="utf-8") as file_: | |
for line in file_: | |
collection.add(line.rstrip()) | |
return collection | |
def get_file_extension(path, dot=True, lower=True): | |
ext = os.path.splitext(path)[1] | |
ext = ext if dot else ext[1:] | |
return ext.lower() if lower else ext | |