Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import List, Optional | |
import torch | |
from torch import Tensor | |
def script_skip_tensor_list(x: List[Tensor], mask): | |
res = [xi[mask] if xi.size(0) == mask.size(0) else xi[:, mask] for xi in x] | |
outputs = [] | |
for i, t in enumerate(res): | |
if t.numel() != 0: | |
outputs.append(t) | |
else: | |
outputs.append(x[i]) | |
return outputs | |
def script_skip_tensor(x: Tensor, mask): | |
# None case | |
if x.size(0) == 0: | |
return x | |
res = x[mask] if x.size(0) == mask.size(0) else x[:, mask] | |
if res.numel() == 0: | |
return x | |
else: | |
return res | |
def expand_2d_or_3d_tensor(x, trg_dim: int, padding_idx: int): | |
""" | |
Expand 2D/3D tensor on dim=1 | |
""" | |
if x is None: | |
return None | |
assert x.dim() == 2 or x.dim() == 3 | |
assert trg_dim >= x.size(1), (trg_dim, x.size()) | |
if trg_dim == x.size(1): | |
return x | |
dims = [x.size(0), trg_dim - x.size(1)] | |
if x.dim() == 3: | |
dims.append(x.size(2)) | |
x = torch.cat([x, torch.zeros(dims).to(x).fill_(padding_idx)], 1) | |
return x | |
def coalesce(x: Optional[Tensor], y: Tensor) -> Tensor: | |
return x if x is not None else y | |
def fill_tensors( | |
x: Optional[Tensor], mask, y: Optional[Tensor], padding_idx: int | |
) -> Optional[Tensor]: | |
""" | |
Filling tensor x with y at masked positions (dim=0). | |
""" | |
if x is None or x.size()[0] == 0 or y is None: | |
return x | |
assert x.dim() == y.dim() and mask.size(0) == x.size(0) | |
assert x.dim() == 2 or (x.dim() == 3 and x.size(2) == y.size(2)) | |
n_selected = mask.sum() | |
if n_selected == 0: | |
return x | |
assert n_selected == y.size(0) | |
if n_selected == x.size(0): | |
return y | |
if x.size(1) < y.size(1): | |
x = expand_2d_or_3d_tensor(x, y.size(1), padding_idx) | |
x[mask] = y | |
elif x.size(1) > y.size(1): | |
x[mask] = torch.tensor(padding_idx).type_as(x) | |
if x.dim() == 2: | |
x[mask, : y.size(1)] = y | |
else: | |
x[mask, : y.size(1), :] = y | |
else: | |
x[mask] = y | |
return x | |