Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
This file implements: | |
Ghazvininejad, Marjan, et al. | |
"Constant-time machine translation with conditional masked language models." | |
arXiv preprint arXiv:1904.09324 (2019). | |
""" | |
from fairseq.models import register_model, register_model_architecture | |
from fairseq.models.nat import NATransformerModel | |
from fairseq.utils import new_arange | |
def _skeptical_unmasking(output_scores, output_masks, p): | |
sorted_index = output_scores.sort(-1)[1] | |
boundary_len = ( | |
(output_masks.sum(1, keepdim=True).type_as(output_scores) - 2) * p | |
).long() | |
skeptical_mask = new_arange(output_masks) < boundary_len | |
return skeptical_mask.scatter(1, sorted_index, skeptical_mask) | |
class CMLMNATransformerModel(NATransformerModel): | |
def add_args(parser): | |
NATransformerModel.add_args(parser) | |
def forward( | |
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs | |
): | |
assert not self.decoder.src_embedding_copy, "do not support embedding copy." | |
# encoding | |
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) | |
# length prediction | |
length_out = self.decoder.forward_length( | |
normalize=False, encoder_out=encoder_out | |
) | |
length_tgt = self.decoder.forward_length_prediction( | |
length_out, encoder_out, tgt_tokens | |
) | |
# decoding | |
word_ins_out = self.decoder( | |
normalize=False, | |
prev_output_tokens=prev_output_tokens, | |
encoder_out=encoder_out, | |
) | |
word_ins_mask = prev_output_tokens.eq(self.unk) | |
return { | |
"word_ins": { | |
"out": word_ins_out, | |
"tgt": tgt_tokens, | |
"mask": word_ins_mask, | |
"ls": self.args.label_smoothing, | |
"nll_loss": True, | |
}, | |
"length": { | |
"out": length_out, | |
"tgt": length_tgt, | |
"factor": self.decoder.length_loss_factor, | |
}, | |
} | |
def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs): | |
step = decoder_out.step | |
max_step = decoder_out.max_step | |
output_tokens = decoder_out.output_tokens | |
output_scores = decoder_out.output_scores | |
history = decoder_out.history | |
# execute the decoder | |
output_masks = output_tokens.eq(self.unk) | |
_scores, _tokens = self.decoder( | |
normalize=True, | |
prev_output_tokens=output_tokens, | |
encoder_out=encoder_out, | |
).max(-1) | |
output_tokens.masked_scatter_(output_masks, _tokens[output_masks]) | |
output_scores.masked_scatter_(output_masks, _scores[output_masks]) | |
if history is not None: | |
history.append(output_tokens.clone()) | |
# skeptical decoding (depend on the maximum decoding steps.) | |
if (step + 1) < max_step: | |
skeptical_mask = _skeptical_unmasking( | |
output_scores, output_tokens.ne(self.pad), 1 - (step + 1) / max_step | |
) | |
output_tokens.masked_fill_(skeptical_mask, self.unk) | |
output_scores.masked_fill_(skeptical_mask, 0.0) | |
if history is not None: | |
history.append(output_tokens.clone()) | |
return decoder_out._replace( | |
output_tokens=output_tokens, | |
output_scores=output_scores, | |
attn=None, | |
history=history, | |
) | |
def cmlm_base_architecture(args): | |
args.encoder_embed_path = getattr(args, "encoder_embed_path", None) | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) | |
args.encoder_layers = getattr(args, "encoder_layers", 6) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) | |
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) | |
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) | |
args.decoder_embed_path = getattr(args, "decoder_embed_path", None) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) | |
args.decoder_ffn_embed_dim = getattr( | |
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim | |
) | |
args.decoder_layers = getattr(args, "decoder_layers", 6) | |
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) | |
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) | |
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) | |
args.attention_dropout = getattr(args, "attention_dropout", 0.0) | |
args.activation_dropout = getattr(args, "activation_dropout", 0.0) | |
args.activation_fn = getattr(args, "activation_fn", "relu") | |
args.dropout = getattr(args, "dropout", 0.1) | |
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) | |
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) | |
args.share_decoder_input_output_embed = getattr( | |
args, "share_decoder_input_output_embed", False | |
) | |
args.share_all_embeddings = getattr(args, "share_all_embeddings", True) | |
args.no_token_positional_embeddings = getattr( | |
args, "no_token_positional_embeddings", False | |
) | |
args.adaptive_input = getattr(args, "adaptive_input", False) | |
args.apply_bert_init = getattr(args, "apply_bert_init", False) | |
args.decoder_output_dim = getattr( | |
args, "decoder_output_dim", args.decoder_embed_dim | |
) | |
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) | |
# --- special arguments --- | |
args.sg_length_pred = getattr(args, "sg_length_pred", False) | |
args.pred_length_offset = getattr(args, "pred_length_offset", False) | |
args.length_loss_factor = getattr(args, "length_loss_factor", 0.1) | |
args.ngram_predictor = getattr(args, "ngram_predictor", 1) | |
args.src_embedding_copy = getattr(args, "src_embedding_copy", False) | |
def cmlm_wmt_en_de(args): | |
cmlm_base_architecture(args) | |