TomatoCocotree
上传
6a62ffb
import argparse
import logging
import torch.nn as nn
import fairseq.checkpoint_utils
from fairseq.models import (
FairseqEncoderDecoderModel,
register_model,
register_model_architecture,
)
from fairseq.models.transformer import TransformerDecoder
from fairseq.models.roberta import model as roberta
logger = logging.getLogger(__name__)
@register_model("roberta_enc_dec")
class RobertaEncDecModel(FairseqEncoderDecoderModel):
@staticmethod
def add_args(parser):
parser.add_argument(
"--pretrained-mlm-checkpoint",
default=None,
type=str,
metavar="PRETRAINED",
help="path to pretrained mlm checkpoint",
)
parser.add_argument(
"--pretrained-decoder", action="store_true", help="reload decoder"
)
parser.add_argument(
"--hack-layernorm-embedding",
action="store_true",
help="hack to reload old models trained with encoder-normalize-before=False (no equivalent to encoder-normalize-before=False and layernorm_embedding=False",
)
parser.add_argument(
"--share-decoder-input-output-embed",
action="store_true",
help="share decoder input and output embeddings",
)
parser.add_argument(
"--share-all-embeddings",
action="store_true",
help="share encoder, decoder and output embeddings"
" (requires shared dictionary and embed dim)",
)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present
base_enc_dec_architecture(args)
if args.pretrained_mlm_checkpoint:
arg_overrides = None
if args.hack_layernorm_embedding:
arg_overrides = {"layernorm_embedding": False}
loaded = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[args.pretrained_mlm_checkpoint], arg_overrides=arg_overrides
)
([roberta_enc], _cfg, _task) = loaded
else:
# Do we need to edit untie_weights here ?
share_in_out = (
args.share_decoder_input_output_embed or args.share_all_embeddings
)
args.untie_weights_roberta = not share_in_out
if args.hack_layernorm_embedding:
args.layernorm_embedding = False
args.encoder_normalize_before = False
roberta_enc = roberta.RobertaModel.build_model(args, task)
return cls.from_roberta(roberta_enc, args, task.source_dictionary)
@staticmethod
def from_roberta(roberta_enc: roberta.RobertaModel, args, dictionary):
encoder = roberta_enc.encoder.sentence_encoder
vocab_size, embed_dim = encoder.embed_tokens.weight.shape
if args.share_all_embeddings:
lm_head = roberta_enc.encoder.lm_head
assert encoder.embed_tokens.weight is lm_head.weight, (
"Can't use --share-all-embeddings with a model "
"that was pretraiend with --untie-weights-roberta_enc"
)
else:
lm_head = roberta.RobertaLMHead(
embed_dim, vocab_size, roberta_enc.args.activation_fn
)
dec_embs = nn.Embedding(vocab_size, embed_dim, dictionary.pad())
if args.share_all_embeddings or args.share_decoder_input_output_embed:
# Note: I wasn't able to use Embedding _weight parameter to achive this sharing.
dec_embs.weight = lm_head.weight
decoder = TransformerDecoder(
RobertaEncDecModel.read_args_from_roberta(roberta_enc.args),
dictionary,
dec_embs,
no_encoder_attn=False,
output_projection=lm_head,
)
if getattr(args, "pretrained_decoder", False):
decoder_dict = encoder.state_dict()
# TODO: hide setting "encoder_attn" layers behind a flag.
for k, w in list(decoder_dict.items()):
if ".self_attn" in k:
k_enc_attn = k.replace(".self_attn", ".encoder_attn")
decoder_dict[k_enc_attn] = w.detach().clone()
for k, w in lm_head.state_dict().items():
decoder_dict["output_projection." + k] = w
missing_keys, unexpected_keys = decoder.load_state_dict(
decoder_dict, strict=False
)
# missing_keys = [m for m in missing_keys if ".encoder_attn" not in m]
assert not missing_keys and not unexpected_keys, (
"Failed to load state dict. "
f"Missing keys: {missing_keys}. "
f"Unexpected keys: {unexpected_keys}."
)
if args.share_all_embeddings:
assert decoder.output_projection.weight is decoder.embed_tokens.weight
assert encoder.embed_tokens.weight is decoder.embed_tokens.weight
elif args.share_decoder_input_output_embed:
assert decoder.output_projection.weight is decoder.embed_tokens.weight
assert encoder.embed_tokens.weight is not decoder.embed_tokens.weight
else:
assert decoder.output_projection.weight is not decoder.embed_tokens.weight
assert encoder.embed_tokens.weight is not decoder.embed_tokens.weight
return RobertaEncDecModel(encoder, decoder)
@staticmethod
def read_args_from_roberta(roberta_args: argparse.Namespace):
# TODO: this would become easier if encoder/decoder where using a similar
# TransformerConfig object
args = argparse.Namespace(**vars(roberta_args))
attr_map = [
("encoder_attention_heads", "decoder_attention_heads"),
("encoder_embed_dim", "decoder_embed_dim"),
("encoder_embed_dim", "decoder_output_dim"),
("encoder_normalize_before", "decoder_normalize_before"),
("encoder_layers_to_keep", "decoder_layers_to_keep"),
("encoder_ffn_embed_dim", "decoder_ffn_embed_dim"),
("encoder_layerdrop", "decoder_layerdrop"),
("encoder_layers", "decoder_layers"),
("encoder_learned_pos", "decoder_learned_pos"),
# should this be set from here ?
("max_positions", "max_target_positions"),
]
for k1, k2 in attr_map:
setattr(args, k2, getattr(roberta_args, k1))
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = not roberta_args.untie_weights_roberta
return args
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + "." if name != "" else ""
super().upgrade_state_dict_named(state_dict, name)
old_keys = list(state_dict.keys())
# rename decoder -> encoder before upgrading children modules
for k in old_keys:
if k.startswith(prefix + "encoder.lm_head"):
state_dict.pop(k)
continue
new_k = k
new_k = new_k.replace(".sentence_encoder.", ".")
new_k = new_k.replace("decoder.lm_head.", "decoder.output_projection.")
if k == new_k:
continue
# print(k, "->", new_k)
state_dict[new_k] = state_dict.pop(k)
@register_model_architecture("roberta_enc_dec", "roberta_enc_dec")
def base_enc_dec_architecture(args):
args.hack_layernorm_embedding = getattr(args, "hack_layernorm_embedding", False)
args.pretrained_mlm_checkpoint = getattr(args, "pretrained_mlm_checkpoint", None)
args.pretrained_decoder = getattr(args, "pretrained_decoder", None)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
roberta.base_architecture(args)