Spaces:
Running
Running
import argparse | |
import logging | |
import torch.nn as nn | |
import fairseq.checkpoint_utils | |
from fairseq.models import ( | |
FairseqEncoderDecoderModel, | |
register_model, | |
register_model_architecture, | |
) | |
from fairseq.models.transformer import TransformerDecoder | |
from fairseq.models.roberta import model as roberta | |
logger = logging.getLogger(__name__) | |
class RobertaEncDecModel(FairseqEncoderDecoderModel): | |
def add_args(parser): | |
parser.add_argument( | |
"--pretrained-mlm-checkpoint", | |
default=None, | |
type=str, | |
metavar="PRETRAINED", | |
help="path to pretrained mlm checkpoint", | |
) | |
parser.add_argument( | |
"--pretrained-decoder", action="store_true", help="reload decoder" | |
) | |
parser.add_argument( | |
"--hack-layernorm-embedding", | |
action="store_true", | |
help="hack to reload old models trained with encoder-normalize-before=False (no equivalent to encoder-normalize-before=False and layernorm_embedding=False", | |
) | |
parser.add_argument( | |
"--share-decoder-input-output-embed", | |
action="store_true", | |
help="share decoder input and output embeddings", | |
) | |
parser.add_argument( | |
"--share-all-embeddings", | |
action="store_true", | |
help="share encoder, decoder and output embeddings" | |
" (requires shared dictionary and embed dim)", | |
) | |
def build_model(cls, args, task): | |
"""Build a new model instance.""" | |
# make sure all arguments are present | |
base_enc_dec_architecture(args) | |
if args.pretrained_mlm_checkpoint: | |
arg_overrides = None | |
if args.hack_layernorm_embedding: | |
arg_overrides = {"layernorm_embedding": False} | |
loaded = fairseq.checkpoint_utils.load_model_ensemble_and_task( | |
[args.pretrained_mlm_checkpoint], arg_overrides=arg_overrides | |
) | |
([roberta_enc], _cfg, _task) = loaded | |
else: | |
# Do we need to edit untie_weights here ? | |
share_in_out = ( | |
args.share_decoder_input_output_embed or args.share_all_embeddings | |
) | |
args.untie_weights_roberta = not share_in_out | |
if args.hack_layernorm_embedding: | |
args.layernorm_embedding = False | |
args.encoder_normalize_before = False | |
roberta_enc = roberta.RobertaModel.build_model(args, task) | |
return cls.from_roberta(roberta_enc, args, task.source_dictionary) | |
def from_roberta(roberta_enc: roberta.RobertaModel, args, dictionary): | |
encoder = roberta_enc.encoder.sentence_encoder | |
vocab_size, embed_dim = encoder.embed_tokens.weight.shape | |
if args.share_all_embeddings: | |
lm_head = roberta_enc.encoder.lm_head | |
assert encoder.embed_tokens.weight is lm_head.weight, ( | |
"Can't use --share-all-embeddings with a model " | |
"that was pretraiend with --untie-weights-roberta_enc" | |
) | |
else: | |
lm_head = roberta.RobertaLMHead( | |
embed_dim, vocab_size, roberta_enc.args.activation_fn | |
) | |
dec_embs = nn.Embedding(vocab_size, embed_dim, dictionary.pad()) | |
if args.share_all_embeddings or args.share_decoder_input_output_embed: | |
# Note: I wasn't able to use Embedding _weight parameter to achive this sharing. | |
dec_embs.weight = lm_head.weight | |
decoder = TransformerDecoder( | |
RobertaEncDecModel.read_args_from_roberta(roberta_enc.args), | |
dictionary, | |
dec_embs, | |
no_encoder_attn=False, | |
output_projection=lm_head, | |
) | |
if getattr(args, "pretrained_decoder", False): | |
decoder_dict = encoder.state_dict() | |
# TODO: hide setting "encoder_attn" layers behind a flag. | |
for k, w in list(decoder_dict.items()): | |
if ".self_attn" in k: | |
k_enc_attn = k.replace(".self_attn", ".encoder_attn") | |
decoder_dict[k_enc_attn] = w.detach().clone() | |
for k, w in lm_head.state_dict().items(): | |
decoder_dict["output_projection." + k] = w | |
missing_keys, unexpected_keys = decoder.load_state_dict( | |
decoder_dict, strict=False | |
) | |
# missing_keys = [m for m in missing_keys if ".encoder_attn" not in m] | |
assert not missing_keys and not unexpected_keys, ( | |
"Failed to load state dict. " | |
f"Missing keys: {missing_keys}. " | |
f"Unexpected keys: {unexpected_keys}." | |
) | |
if args.share_all_embeddings: | |
assert decoder.output_projection.weight is decoder.embed_tokens.weight | |
assert encoder.embed_tokens.weight is decoder.embed_tokens.weight | |
elif args.share_decoder_input_output_embed: | |
assert decoder.output_projection.weight is decoder.embed_tokens.weight | |
assert encoder.embed_tokens.weight is not decoder.embed_tokens.weight | |
else: | |
assert decoder.output_projection.weight is not decoder.embed_tokens.weight | |
assert encoder.embed_tokens.weight is not decoder.embed_tokens.weight | |
return RobertaEncDecModel(encoder, decoder) | |
def read_args_from_roberta(roberta_args: argparse.Namespace): | |
# TODO: this would become easier if encoder/decoder where using a similar | |
# TransformerConfig object | |
args = argparse.Namespace(**vars(roberta_args)) | |
attr_map = [ | |
("encoder_attention_heads", "decoder_attention_heads"), | |
("encoder_embed_dim", "decoder_embed_dim"), | |
("encoder_embed_dim", "decoder_output_dim"), | |
("encoder_normalize_before", "decoder_normalize_before"), | |
("encoder_layers_to_keep", "decoder_layers_to_keep"), | |
("encoder_ffn_embed_dim", "decoder_ffn_embed_dim"), | |
("encoder_layerdrop", "decoder_layerdrop"), | |
("encoder_layers", "decoder_layers"), | |
("encoder_learned_pos", "decoder_learned_pos"), | |
# should this be set from here ? | |
("max_positions", "max_target_positions"), | |
] | |
for k1, k2 in attr_map: | |
setattr(args, k2, getattr(roberta_args, k1)) | |
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) | |
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) | |
args.share_decoder_input_output_embed = not roberta_args.untie_weights_roberta | |
return args | |
def upgrade_state_dict_named(self, state_dict, name): | |
prefix = name + "." if name != "" else "" | |
super().upgrade_state_dict_named(state_dict, name) | |
old_keys = list(state_dict.keys()) | |
# rename decoder -> encoder before upgrading children modules | |
for k in old_keys: | |
if k.startswith(prefix + "encoder.lm_head"): | |
state_dict.pop(k) | |
continue | |
new_k = k | |
new_k = new_k.replace(".sentence_encoder.", ".") | |
new_k = new_k.replace("decoder.lm_head.", "decoder.output_projection.") | |
if k == new_k: | |
continue | |
# print(k, "->", new_k) | |
state_dict[new_k] = state_dict.pop(k) | |
def base_enc_dec_architecture(args): | |
args.hack_layernorm_embedding = getattr(args, "hack_layernorm_embedding", False) | |
args.pretrained_mlm_checkpoint = getattr(args, "pretrained_mlm_checkpoint", None) | |
args.pretrained_decoder = getattr(args, "pretrained_decoder", None) | |
args.share_all_embeddings = getattr(args, "share_all_embeddings", False) | |
args.share_decoder_input_output_embed = getattr( | |
args, "share_decoder_input_output_embed", False | |
) | |
roberta.base_architecture(args) | |