TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import logging
from typing import Dict
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from fairseq.data.audio.audio_utils import (
TTSSpectrogram,
get_fourier_basis,
get_mel_filters,
get_window,
)
from fairseq.data.audio.speech_to_text_dataset import S2TDataConfig
from fairseq.models import BaseFairseqModel, register_model
from fairseq.models.text_to_speech.codehifigan import CodeGenerator as CodeHiFiGANModel
from fairseq.models.text_to_speech.hifigan import Generator as HiFiGANModel
from fairseq.models.text_to_speech.hub_interface import VocoderHubInterface
logger = logging.getLogger(__name__)
class PseudoInverseMelScale(torch.nn.Module):
def __init__(self, n_stft, n_mels, sample_rate, f_min, f_max) -> None:
super(PseudoInverseMelScale, self).__init__()
self.n_mels = n_mels
basis = get_mel_filters(sample_rate, (n_stft - 1) * 2, n_mels, f_min, f_max)
basis = torch.pinverse(basis) # F x F_mel
self.register_buffer("basis", basis)
def forward(self, melspec: torch.Tensor) -> torch.Tensor:
# pack batch
shape = melspec.shape # B_1 x ... x B_K x F_mel x T
n_mels, time = shape[-2], shape[-1]
melspec = melspec.view(-1, n_mels, time)
freq, _ = self.basis.size() # F x F_mel
assert self.n_mels == n_mels, (self.n_mels, n_mels)
specgram = self.basis.matmul(melspec).clamp(min=0)
# unpack batch
specgram = specgram.view(shape[:-2] + (freq, time))
return specgram
class GriffinLim(torch.nn.Module):
def __init__(
self,
n_fft: int,
win_length: int,
hop_length: int,
n_iter: int,
window_fn=torch.hann_window,
):
super(GriffinLim, self).__init__()
self.transform = TTSSpectrogram(
n_fft, win_length, hop_length, return_phase=True
)
basis = get_fourier_basis(n_fft)
basis = torch.pinverse(n_fft / hop_length * basis).T[:, None, :]
basis *= get_window(window_fn, n_fft, win_length)
self.register_buffer("basis", basis)
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.n_iter = n_iter
self.tiny = 1.1754944e-38
@classmethod
def get_window_sum_square(
cls, n_frames, hop_length, win_length, n_fft, window_fn=torch.hann_window
) -> torch.Tensor:
w_sq = get_window(window_fn, n_fft, win_length) ** 2
n = n_fft + hop_length * (n_frames - 1)
x = torch.zeros(n, dtype=torch.float32)
for i in range(n_frames):
ofst = i * hop_length
x[ofst : min(n, ofst + n_fft)] += w_sq[: max(0, min(n_fft, n - ofst))]
return x
def inverse(self, magnitude: torch.Tensor, phase) -> torch.Tensor:
x = torch.cat(
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
)
x = F.conv_transpose1d(x, self.basis, stride=self.hop_length)
win_sum_sq = self.get_window_sum_square(
magnitude.shape[-1],
hop_length=self.hop_length,
win_length=self.win_length,
n_fft=self.n_fft,
).to(magnitude.device)
# remove modulation effects
approx_nonzero_indices = win_sum_sq > self.tiny
x[:, :, approx_nonzero_indices] /= win_sum_sq[approx_nonzero_indices]
x *= self.n_fft / self.hop_length
x = x[:, :, self.n_fft // 2 :]
x = x[:, :, : -self.n_fft // 2 :]
return x
def forward(self, specgram: torch.Tensor) -> torch.Tensor:
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*specgram.shape)))
angles = torch.from_numpy(angles).to(specgram)
_specgram = specgram.view(-1, specgram.shape[-2], specgram.shape[-1])
waveform = self.inverse(_specgram, angles).squeeze(1)
for _ in range(self.n_iter):
_, angles = self.transform(waveform)
waveform = self.inverse(_specgram, angles).squeeze(1)
return waveform.squeeze(0)
class GriffinLimVocoder(nn.Module):
def __init__(
self,
sample_rate,
win_size,
hop_size,
n_fft,
n_mels,
f_min,
f_max,
window_fn,
spec_bwd_max_iter=32,
fp16=False,
):
super().__init__()
self.inv_mel_transform = PseudoInverseMelScale(
n_stft=n_fft // 2 + 1,
n_mels=n_mels,
sample_rate=sample_rate,
f_min=f_min,
f_max=f_max,
)
self.gl_transform = GriffinLim(
n_fft=n_fft,
win_length=win_size,
hop_length=hop_size,
window_fn=window_fn,
n_iter=spec_bwd_max_iter,
)
if fp16:
self.half()
self.inv_mel_transform.half()
self.gl_transform.half()
else:
self.float()
self.inv_mel_transform.float()
self.gl_transform.float()
def forward(self, x):
# x: (B x) T x D -> (B x) 1 x T
# NOTE: batched forward produces noisier waveform. recommend running
# one utterance at a time
self.eval()
x = x.exp().transpose(-1, -2)
x = self.inv_mel_transform(x)
x = self.gl_transform(x)
return x
@classmethod
def from_data_cfg(cls, args, data_cfg: S2TDataConfig):
feat_cfg = data_cfg.config["features"]
window_fn = getattr(torch, feat_cfg["window_fn"] + "_window")
return cls(
sample_rate=feat_cfg["sample_rate"],
win_size=int(feat_cfg["win_len_t"] * feat_cfg["sample_rate"]),
hop_size=int(feat_cfg["hop_len_t"] * feat_cfg["sample_rate"]),
n_fft=feat_cfg["n_fft"],
n_mels=feat_cfg["n_mels"],
f_min=feat_cfg["f_min"],
f_max=feat_cfg["f_max"],
window_fn=window_fn,
spec_bwd_max_iter=args.spec_bwd_max_iter,
fp16=args.fp16,
)
class HiFiGANVocoder(nn.Module):
def __init__(
self, checkpoint_path: str, model_cfg: Dict[str, str], fp16: bool = False
) -> None:
super().__init__()
self.model = HiFiGANModel(model_cfg)
state_dict = torch.load(checkpoint_path)
self.model.load_state_dict(state_dict["generator"])
if fp16:
self.model.half()
logger.info(f"loaded HiFiGAN checkpoint from {checkpoint_path}")
def forward(self, x: torch.Tensor) -> torch.Tensor:
# (B x) T x D -> (B x) 1 x T
model = self.model.eval()
if len(x.shape) == 2:
return model(x.unsqueeze(0).transpose(1, 2)).detach().squeeze(0)
else:
return model(x.transpose(-1, -2)).detach()
@classmethod
def from_data_cfg(cls, args, data_cfg: S2TDataConfig):
vocoder_cfg = data_cfg.vocoder
assert vocoder_cfg.get("type", "griffin_lim") == "hifigan"
with open(vocoder_cfg["config"]) as f:
model_cfg = json.load(f)
return cls(vocoder_cfg["checkpoint"], model_cfg, fp16=args.fp16)
@register_model("CodeHiFiGANVocoder")
class CodeHiFiGANVocoder(BaseFairseqModel):
def __init__(
self, checkpoint_path: str, model_cfg: Dict[str, str], fp16: bool = False
) -> None:
super().__init__()
self.model = CodeHiFiGANModel(model_cfg)
if torch.cuda.is_available():
state_dict = torch.load(checkpoint_path)
else:
state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
self.model.load_state_dict(state_dict["generator"])
self.model.eval()
if fp16:
self.model.half()
self.model.remove_weight_norm()
logger.info(f"loaded CodeHiFiGAN checkpoint from {checkpoint_path}")
def forward(self, x: Dict[str, torch.Tensor], dur_prediction=False) -> torch.Tensor:
assert "code" in x
x["dur_prediction"] = dur_prediction
# remove invalid code
mask = x["code"] >= 0
x["code"] = x["code"][mask].unsqueeze(dim=0)
if "f0" in x:
f0_up_ratio = x["f0"].size(1) // x["code"].size(1)
mask = mask.unsqueeze(2).repeat(1, 1, f0_up_ratio).view(-1, x["f0"].size(1))
x["f0"] = x["f0"][mask].unsqueeze(dim=0)
return self.model(**x).detach().squeeze()
@classmethod
def from_data_cfg(cls, args, data_cfg):
vocoder_cfg = data_cfg.vocoder
assert vocoder_cfg is not None, "vocoder not specified in the data config"
with open(vocoder_cfg["config"]) as f:
model_cfg = json.load(f)
return cls(vocoder_cfg["checkpoint"], model_cfg, fp16=args.fp16)
@classmethod
def hub_models(cls):
base_url = "http://dl.fbaipublicfiles.com/fairseq/vocoder"
model_ids = [
"unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur",
"unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_es_css10_dur",
"unit_hifigan_HK_layer12.km2500_frame_TAT-TTS",
]
return {i: f"{base_url}/{i}.tar.gz" for i in model_ids}
@classmethod
def from_pretrained(
cls,
model_name_or_path,
checkpoint_file="model.pt",
data_name_or_path=".",
config="config.json",
fp16: bool = False,
**kwargs,
):
from fairseq import hub_utils
x = hub_utils.from_pretrained(
model_name_or_path,
checkpoint_file,
data_name_or_path,
archive_map=cls.hub_models(),
config_yaml=config,
fp16=fp16,
is_vocoder=True,
**kwargs,
)
with open(f"{x['args']['data']}/{config}") as f:
vocoder_cfg = json.load(f)
assert len(x["args"]["model_path"]) == 1, "Too many vocoder models in the input"
vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg)
return VocoderHubInterface(vocoder_cfg, vocoder)
def get_vocoder(args, data_cfg: S2TDataConfig):
if args.vocoder == "griffin_lim":
return GriffinLimVocoder.from_data_cfg(args, data_cfg)
elif args.vocoder == "hifigan":
return HiFiGANVocoder.from_data_cfg(args, data_cfg)
elif args.vocoder == "code_hifigan":
return CodeHiFiGANVocoder.from_data_cfg(args, data_cfg)
else:
raise ValueError("Unknown vocoder")