TomatoCocotree
上传
6a62ffb
raw
history blame contribute delete
No virus
27.1 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import copy
import logging
import math
import re
from argparse import Namespace
from dataclasses import dataclass, field
from typing import Any, Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import II, MISSING, open_dict
from fairseq import checkpoint_utils, tasks, utils
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.models import (
BaseFairseqModel,
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
)
from fairseq.models.wav2vec.wav2vec2 import MASKING_DISTRIBUTION_CHOICES
from fairseq.modules import LayerNorm, PositionalEmbedding, TransformerDecoderLayer
from fairseq.tasks import FairseqTask
logger = logging.getLogger(__name__)
@dataclass
class Wav2Vec2AsrConfig(FairseqDataclass):
w2v_path: str = field(
default=MISSING, metadata={"help": "path to wav2vec 2.0 model"}
)
no_pretrained_weights: bool = field(
default=False, metadata={"help": "if true, does not load pretrained weights"}
)
dropout_input: float = field(
default=0.0,
metadata={"help": "dropout to apply to the input (after feat extr)"},
)
final_dropout: float = field(
default=0.0,
metadata={"help": "dropout after transformer and before final projection"},
)
dropout: float = field(
default=0.0, metadata={"help": "dropout probability inside wav2vec 2.0 model"}
)
attention_dropout: float = field(
default=0.0,
metadata={
"help": "dropout probability for attention weights inside wav2vec 2.0 model"
},
)
activation_dropout: float = field(
default=0.0,
metadata={
"help": "dropout probability after activation in FFN inside wav2vec 2.0 model"
},
)
conv_feature_layers: Optional[str] = field(
default="[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]",
metadata={
"help": (
"string describing convolutional feature extraction "
"layers in form of a python list that contains "
"[(dim, kernel_size, stride), ...]"
),
},
)
encoder_embed_dim: Optional[int] = field(
default=768, metadata={"help": "encoder embedding dimension"}
)
# masking
apply_mask: bool = field(
default=False, metadata={"help": "apply masking during fine-tuning"}
)
mask_length: int = field(
default=10, metadata={"help": "repeat the mask indices multiple times"}
)
mask_prob: float = field(
default=0.5,
metadata={
"help": "probability of replacing a token with mask (normalized by length)"
},
)
mask_selection: MASKING_DISTRIBUTION_CHOICES = field(
default="static", metadata={"help": "how to choose masks"}
)
mask_other: float = field(
default=0,
metadata={
"help": "secondary mask argument (used for more complex distributions), "
"see help in compute_mask_indices"
},
)
no_mask_overlap: bool = field(
default=False, metadata={"help": "whether to allow masks to overlap"}
)
mask_min_space: Optional[int] = field(
default=1,
metadata={"help": "min space between spans (if no overlap is enabled)"},
)
require_same_masks: bool = field(
default=True,
metadata={
"help": "whether to number of masked timesteps must be the same across all "
"examples in a batch"
},
)
mask_dropout: float = field(
default=0.0,
metadata={"help": "percent of masks to unmask for each sample"},
)
# channel masking
mask_channel_length: int = field(
default=10, metadata={"help": "length of the mask for features (channels)"}
)
mask_channel_prob: float = field(
default=0.0, metadata={"help": "probability of replacing a feature with 0"}
)
mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field(
default="static",
metadata={"help": "how to choose mask length for channel masking"},
)
mask_channel_other: float = field(
default=0,
metadata={
"help": "secondary mask argument (used for more complex distributions), "
"see help in compute_mask_indicesh"
},
)
no_mask_channel_overlap: bool = field(
default=False, metadata={"help": "whether to allow channel masks to overlap"}
)
freeze_finetune_updates: int = field(
default=0, metadata={"help": "dont finetune wav2vec for this many updates"}
)
feature_grad_mult: float = field(
default=0.0, metadata={"help": "reset feature grad mult in wav2vec 2.0 to this"}
)
layerdrop: float = field(
default=0.0, metadata={"help": "probability of dropping a layer in wav2vec 2.0"}
)
mask_channel_min_space: Optional[int] = field(
default=1,
metadata={"help": "min space between spans (if no overlap is enabled)"},
)
mask_channel_before: bool = False
normalize: bool = II("task.normalize")
data: str = II("task.data")
# this holds the loaded wav2vec args
w2v_args: Any = None
offload_activations: bool = field(
default=False, metadata={"help": "offload_activations"}
)
min_params_to_wrap: int = field(
default=int(1e8),
metadata={
"help": "minimum number of params for a layer to be wrapped with FSDP() when "
"training with --ddp-backend=fully_sharded. Smaller values will "
"improve memory efficiency, but may make torch.distributed "
"communication less efficient due to smaller input sizes. This option "
"is set to 0 (i.e., always wrap) when --checkpoint-activations or "
"--offload-activations are passed."
},
)
checkpoint_activations: bool = field(
default=False,
metadata={"help": "recompute activations and save memory for extra compute"},
)
ddp_backend: str = II("distributed_training.ddp_backend")
@dataclass
class Wav2Vec2CtcConfig(Wav2Vec2AsrConfig):
blank_weight: float = 0
blank_mode: str = "add"
@register_model("wav2vec_ctc", dataclass=Wav2Vec2CtcConfig)
class Wav2VecCtc(BaseFairseqModel):
def __init__(self, cfg: Wav2Vec2CtcConfig, w2v_encoder: BaseFairseqModel):
super().__init__()
self.cfg = cfg
self.w2v_encoder = w2v_encoder
self.blank_weight = cfg.blank_weight
self.blank_mode = cfg.blank_mode
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
return state_dict
@classmethod
def build_model(cls, cfg: Wav2Vec2CtcConfig, task: FairseqTask):
"""Build a new model instance."""
w2v_encoder = Wav2VecEncoder(cfg, len(task.target_dictionary))
return cls(cfg, w2v_encoder)
def get_logits(self, net_output, normalize=False):
logits = net_output["encoder_out"]
if self.blank_weight != 0:
if self.blank_mode == "add":
logits[..., 0] += self.blank_weight
elif self.blank_mode == "set":
logits[..., 0] = self.blank_weight
else:
raise Exception(f"invalid blank mode {self.blank_mode}")
if net_output["padding_mask"] is not None and net_output["padding_mask"].any():
number_of_classes = logits.size(-1)
masking_tensor = torch.ones(
number_of_classes, device=logits.device
) * float("-inf")
masking_tensor[0] = 0
logits[net_output["padding_mask"].T] = masking_tensor.type_as(logits)
if normalize:
logits = utils.log_softmax(logits.float(), dim=-1)
return logits
def get_normalized_probs(self, net_output, log_probs):
"""Get normalized probabilities (or log probs) from a net's output."""
logits = self.get_logits(net_output)
if log_probs:
return utils.log_softmax(logits.float(), dim=-1)
else:
return utils.softmax(logits.float(), dim=-1)
def forward(self, **kwargs):
x = self.w2v_encoder(**kwargs)
return x
@dataclass
class Wav2Vec2Seq2SeqConfig(Wav2Vec2AsrConfig):
decoder_embed_dim: int = field(
default=768, metadata={"help": "decoder embedding dimension"}
)
decoder_ffn_embed_dim: int = field(
default=3072, metadata={"help": "decoder embedding dimension for FFN"}
)
decoder_layers: int = field(default=6, metadata={"help": "num of decoder layers"})
decoder_layerdrop: float = field(
default=0.0, metadata={"help": "decoder layerdrop chance"}
)
decoder_attention_heads: int = field(
default=4, metadata={"help": "num decoder attention heads"}
)
decoder_learned_pos: bool = field(
default=False,
metadata={"help": "use learned positional embeddings in the decoder"},
)
decoder_normalize_before: bool = field(
default=False, metadata={"help": "apply layernorm before each decoder block"}
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={
"help": "if set, disables positional embeddings (outside self attention)"
},
)
decoder_dropout: float = field(
default=0.0, metadata={"help": "dropout probability in the decoder"}
)
decoder_attention_dropout: float = field(
default=0.0,
metadata={
"help": "dropout probability for attention weights inside the decoder"
},
)
decoder_activation_dropout: float = field(
default=0.0,
metadata={
"help": "dropout probability after activation in FFN inside the decoder"
},
)
max_target_positions: int = field(
default=2048, metadata={"help": "max target positions"}
)
share_decoder_input_output_embed: bool = field(
default=False, metadata={"help": "share decoder input and output embeddings"}
)
autoregressive: bool = II("task.autoregressive")
@register_model("wav2vec_seq2seq", dataclass=Wav2Vec2Seq2SeqConfig)
class Wav2Vec2Seq2SeqModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@classmethod
def build_model(cls, cfg: Wav2Vec2Seq2SeqConfig, task: FairseqTask):
"""Build a new model instance."""
assert (
cfg.autoregressive
), "Please set task.autoregressive=true for seq2seq asr models"
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
def build_embedding(dictionary, embed_dim):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
return emb
decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim)
encoder = cls.build_encoder(cfg)
decoder = cls.build_decoder(cfg, tgt_dict, decoder_embed_tokens)
return Wav2Vec2Seq2SeqModel(encoder, decoder)
@classmethod
def build_encoder(cls, cfg: Wav2Vec2AsrConfig):
return Wav2VecEncoder(cfg)
@classmethod
def build_decoder(cls, cfg: Wav2Vec2Seq2SeqConfig, tgt_dict, embed_tokens):
return TransformerDecoder(cfg, tgt_dict, embed_tokens)
def forward(self, **kwargs):
encoder_out = self.encoder(**kwargs)
decoder_out = self.decoder(encoder_out=encoder_out, **kwargs)
return decoder_out
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
return state_dict
class Wav2VecEncoder(FairseqEncoder):
def __init__(self, cfg: Wav2Vec2AsrConfig, output_size=None):
self.apply_mask = cfg.apply_mask
arg_overrides = {
"dropout": cfg.dropout,
"activation_dropout": cfg.activation_dropout,
"dropout_input": cfg.dropout_input,
"attention_dropout": cfg.attention_dropout,
"mask_length": cfg.mask_length,
"mask_prob": cfg.mask_prob,
"require_same_masks": getattr(cfg, "require_same_masks", True),
"pct_holes": getattr(cfg, "mask_dropout", 0),
"mask_selection": cfg.mask_selection,
"mask_other": cfg.mask_other,
"no_mask_overlap": cfg.no_mask_overlap,
"mask_channel_length": cfg.mask_channel_length,
"mask_channel_prob": cfg.mask_channel_prob,
"mask_channel_before": cfg.mask_channel_before,
"mask_channel_selection": cfg.mask_channel_selection,
"mask_channel_other": cfg.mask_channel_other,
"no_mask_channel_overlap": cfg.no_mask_channel_overlap,
"encoder_layerdrop": cfg.layerdrop,
"feature_grad_mult": cfg.feature_grad_mult,
"checkpoint_activations": cfg.checkpoint_activations,
"offload_activations": cfg.offload_activations,
"min_params_to_wrap": cfg.min_params_to_wrap,
}
if cfg.w2v_args is None:
state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides)
w2v_args = state.get("cfg", None)
if w2v_args is None:
w2v_args = convert_namespace_to_omegaconf(state["args"])
w2v_args.criterion = None
w2v_args.lr_scheduler = None
cfg.w2v_args = w2v_args
logger.info(w2v_args)
else:
state = None
w2v_args = cfg.w2v_args
if isinstance(w2v_args, Namespace):
cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args)
model_normalized = w2v_args.task.get(
"normalize", w2v_args.model.get("normalize", False)
)
assert cfg.normalize == model_normalized, (
"Fine-tuning works best when data normalization is the same. "
"Please check that --normalize is set or unset for both pre-training and here"
)
if hasattr(cfg, "checkpoint_activations") and cfg.checkpoint_activations:
with open_dict(w2v_args):
w2v_args.model.checkpoint_activations = cfg.checkpoint_activations
w2v_args.task.data = cfg.data
task = tasks.setup_task(w2v_args.task)
model = task.build_model(w2v_args.model, from_checkpoint=True)
model.remove_pretraining_modules()
if state is not None and not cfg.no_pretrained_weights:
self.load_model_weights(state, model, cfg)
super().__init__(task.source_dictionary)
d = w2v_args.model.encoder_embed_dim
self.w2v_model = model
self.final_dropout = nn.Dropout(cfg.final_dropout)
self.freeze_finetune_updates = cfg.freeze_finetune_updates
self.num_updates = 0
targ_d = None
self.proj = None
if output_size is not None:
targ_d = output_size
elif getattr(cfg, "decoder_embed_dim", d) != d:
targ_d = cfg.decoder_embed_dim
if targ_d is not None:
self.proj = Linear(d, targ_d)
def load_model_weights(self, state, model, cfg):
if cfg.ddp_backend == "fully_sharded":
from fairseq.distributed import FullyShardedDataParallel
for name, module in model.named_modules():
if "encoder.layers" in name and len(name.split(".")) == 3:
# Only for layers, we do a special handling and load the weights one by one
# We dont load all weights together as that wont be memory efficient and may
# cause oom
new_dict = {
k.replace(name + ".", ""): v
for (k, v) in state["model"].items()
if name + "." in k
}
assert isinstance(module, FullyShardedDataParallel)
with module.summon_full_params():
module.load_state_dict(new_dict, strict=True)
module._reset_lazy_init()
# Once layers are loaded, filter them out and load everything else.
r = re.compile("encoder.layers.\d.")
filtered_list = list(filter(r.match, state["model"].keys()))
new_big_dict = {
k: v for (k, v) in state["model"].items() if k not in filtered_list
}
model.load_state_dict(new_big_dict, strict=False)
else:
if "_ema" in state["model"]:
del state["model"]["_ema"]
model.load_state_dict(state["model"], strict=True)
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
super().set_num_updates(num_updates)
self.num_updates = num_updates
def forward(self, source, padding_mask, **kwargs):
w2v_args = {
"source": source,
"padding_mask": padding_mask,
"mask": self.apply_mask and self.training,
}
ft = self.freeze_finetune_updates <= self.num_updates
with torch.no_grad() if not ft else contextlib.ExitStack():
res = self.w2v_model.extract_features(**w2v_args)
x = res["x"]
padding_mask = res["padding_mask"]
# B x T x C -> T x B x C
x = x.transpose(0, 1)
x = self.final_dropout(x)
if self.proj:
x = self.proj(x)
return {
"encoder_out": x, # T x B x C
"padding_mask": padding_mask, # B x T,
"layer_results": res["layer_results"],
}
def forward_torchscript(self, net_input):
if torch.jit.is_scripting():
return self.forward(net_input["source"], net_input["padding_mask"])
else:
return self.forward_non_torchscript(net_input)
def reorder_encoder_out(self, encoder_out, new_order):
if encoder_out["encoder_out"] is not None:
encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select(
1, new_order
)
if encoder_out["padding_mask"] is not None:
encoder_out["padding_mask"] = encoder_out["padding_mask"].index_select(
0, new_order
)
return encoder_out
def max_positions(self):
"""Maximum input length supported by the encoder."""
return None
def upgrade_state_dict_named(self, state_dict, name):
return state_dict
class TransformerDecoder(FairseqIncrementalDecoder):
"""
Transformer decoder consisting of *args.decoder_layers* layers. Each layer
is a :class:`TransformerDecoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): decoding dictionary
embed_tokens (torch.nn.Embedding): output embedding
no_encoder_attn (bool, optional): whether to attend to encoder outputs
(default: False).
"""
def __init__(
self,
cfg: Wav2Vec2Seq2SeqConfig,
dictionary,
embed_tokens,
no_encoder_attn=False,
):
super().__init__(dictionary)
self.dropout = cfg.decoder_dropout
self.share_input_output_embed = cfg.share_decoder_input_output_embed
input_embed_dim = embed_tokens.embedding_dim
embed_dim = cfg.decoder_embed_dim
self.output_embed_dim = cfg.decoder_embed_dim
self.layerdrop = cfg.decoder_layerdrop
self.padding_idx = embed_tokens.padding_idx
self.max_target_positions = cfg.max_target_positions
self.embed_tokens = embed_tokens
self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim
self.project_in_dim = (
Linear(input_embed_dim, embed_dim, bias=False)
if embed_dim != input_embed_dim
else None
)
self.embed_positions = (
PositionalEmbedding(
cfg.max_target_positions,
embed_dim,
self.padding_idx,
learned=cfg.decoder_learned_pos,
)
if not cfg.no_token_positional_embeddings
else None
)
# TODO: update this when transformer gets converted to dataclass configs
transformer_cfg = copy.deepcopy(cfg)
with open_dict(transformer_cfg):
transformer_cfg.dropout = transformer_cfg.decoder_dropout
transformer_cfg.attention_dropout = (
transformer_cfg.decoder_attention_dropout
)
transformer_cfg.activation_dropout = (
transformer_cfg.decoder_activation_dropout
)
self.layers = nn.ModuleList([])
self.layers.extend(
[
TransformerDecoderLayer(transformer_cfg, no_encoder_attn)
for _ in range(transformer_cfg.decoder_layers)
]
)
if not self.share_input_output_embed:
self.embed_out = nn.Parameter(
torch.Tensor(len(dictionary), self.output_embed_dim)
)
nn.init.normal_(self.embed_out, mean=0, std=self.output_embed_dim**-0.5)
if transformer_cfg.decoder_normalize_before:
self.layer_norm = LayerNorm(embed_dim)
else:
self.layer_norm = None
def forward(
self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused
):
"""
Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (Tensor, optional): output from the encoder, used for
encoder-side attention
incremental_state (dict): dictionary used for storing state during
:ref:`Incremental decoding`
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs
"""
if type(prev_output_tokens) == list:
max_len = max((len(x) for x in prev_output_tokens))
tmp = torch.zeros(
[len(prev_output_tokens), max_len], device=prev_output_tokens[0].device
)
for (i, p) in enumerate(prev_output_tokens):
tmp[i, : len(p)] = p
prev_output_tokens = tmp
prev_output_tokens = prev_output_tokens.long()
x, extra = self.extract_features(
prev_output_tokens, encoder_out, incremental_state
)
x = self.output_layer(x)
return x, extra
def extract_features(
self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused
):
"""
Similar to *forward* but only return features.
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- a dictionary with any model-specific outputs
"""
# embed positions
positions = (
self.embed_positions(
prev_output_tokens, incremental_state=incremental_state
)
if self.embed_positions is not None
else None
)
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
if positions is not None:
positions = positions[:, -1:]
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(prev_output_tokens)
if self.project_in_dim is not None:
x = self.project_in_dim(x)
if positions is not None:
x += positions
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
attn = None
inner_states = [x]
# decoder layers
self_attn_padding_mask = None
if prev_output_tokens.eq(self.padding_idx).any():
self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx)
for layer in self.layers:
dropout_probability = np.random.random()
if not self.training or (dropout_probability > self.layerdrop):
x, attn, _ = layer(
x,
encoder_out["encoder_out"] if encoder_out is not None else None,
encoder_out["padding_mask"] if encoder_out is not None else None,
incremental_state,
self_attn_mask=self.buffered_future_mask(x)
if incremental_state is None
else None,
self_attn_padding_mask=self_attn_padding_mask,
)
inner_states.append(x)
if self.layer_norm:
x = self.layer_norm(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
return x, {"attn": attn, "inner_states": inner_states}
def output_layer(self, features, **kwargs):
"""Project features to the vocabulary size."""
# project back to size of vocabulary
if self.share_input_output_embed:
return F.linear(features, self.embed_tokens.weight)
else:
return F.linear(features, self.embed_out)
def max_positions(self):
"""Maximum output length supported by the decoder."""
if self.embed_positions is None:
return self.max_target_positions
return min(self.max_target_positions, self.embed_positions.max_positions)
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
if (
not hasattr(self, "_future_mask")
or self._future_mask is None
or self._future_mask.device != tensor.device
or self._future_mask.size(0) < dim
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(tensor.new(dim, dim)), 1
)
return self._future_mask[:dim, :dim]
def upgrade_state_dict_named(self, state_dict, name):
return state_dict
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m