TomatoCocotree
上传
6a62ffb
# Originally from Microsoft Corporation.
# Licensed under the MIT License.
""" Wrapper for ngram_repeat_block cuda extension """
import math
import warnings
from typing import List
import torch
from torch import nn
try:
from fairseq import ngram_repeat_block_cuda
EXTENSION_BUILT = True
except ImportError:
EXTENSION_BUILT = False
def is_cuda_extension_usable() -> bool:
"""Check whether ngram_repeat_block_cuda is built properly"""
if not EXTENSION_BUILT or not torch.cuda.is_available():
return False
bsz = 2
tokens = torch.tensor([[4, 4, 3, 2], [1, 2, 3, 4]], dtype=torch.long, device="cuda")
lprobs = torch.rand((8, 12), device="cuda")
try:
outputs = ngram_repeat_block_cuda.forward(tokens, lprobs, bsz, 3, 4, 3)
outputs = outputs + 4 # This line breaks if the extension is built incorrectly.
return True
except RuntimeError:
warnings.warn(
"NGramRepeatBlock extension must be rebuilt."
'Run TORCH_CUDA_ARCH_LIST="6.0;6.1;7.0" python setup.py build_ext --inplace'
)
return False
class NGramRepeatBlock(nn.Module):
"""Wrapper class for calling ngram_repeat_block cuda extension"""
def __init__(self, no_repeat_ngram_size: int, use_extension: bool = True):
super().__init__()
self.use_extension = is_cuda_extension_usable() if use_extension else False
self.no_repeat_ngram_size = no_repeat_ngram_size
def reset_parameters(self):
pass
@torch.jit.unused
def call_cuda_extension(
self,
tokens,
lprobs,
bsz: int,
beam_size: int,
step: int,
):
return ngram_repeat_block_cuda.forward(
tokens, lprobs, bsz, step, beam_size, self.no_repeat_ngram_size
)
def forward(
self,
tokens,
lprobs,
bsz: int,
beam_size: int,
step: int,
):
"""
Args:
tokens(Tensor): Input tokens(Bsz*beam, seq_len)
lprobs(Tensor): likelihood probability,
Expected to be updated in place.(Bsz*beam, vocab_size)
bsz(int): batch size
step(int): current step
beam_size(int): beam size
no_repeat_ngram_size(int): Ngram size
"""
msg = f"expected {bsz *beam_size} got"
assert tokens.size(0) == bsz * beam_size, f"{msg} {tokens.size(0)}"
assert lprobs.size(0) == bsz * beam_size, f"{msg} {lprobs.size(0)}"
if self.use_extension:
return self.call_cuda_extension(tokens, lprobs, bsz, beam_size, step)
else:
return self._no_repeat_ngram(
tokens,
lprobs,
bsz,
beam_size,
step,
)
def _no_repeat_ngram(self, tokens, lprobs, bsz: int, beam_size: int, step: int):
"""For each hypothesis generate a list of previous ngrams and set associated lprobs to -inf"""
banned_tokens = [
torch.jit.annotate(List[int], []) for bbsz_idx in range(bsz * beam_size)
]
if step + 2 - self.no_repeat_ngram_size >= 0:
cpu_tokens: List[List[int]] = tokens.cpu().tolist()
check_start_pos = step + 2 - self.no_repeat_ngram_size
for bbsz_idx in range(bsz * beam_size):
ngram_to_check = cpu_tokens[bbsz_idx][
-(self.no_repeat_ngram_size - 1) :
]
for i in range(check_start_pos):
if (
ngram_to_check
== cpu_tokens[bbsz_idx][i : i + self.no_repeat_ngram_size - 1]
):
banned_tokens[bbsz_idx].append(
cpu_tokens[bbsz_idx][i + self.no_repeat_ngram_size - 1]
)
for bbsz_idx in range(bsz * beam_size):
lprobs[bbsz_idx][
torch.tensor(banned_tokens[bbsz_idx], dtype=torch.int64)
] = torch.tensor(-math.inf).to(lprobs)
return lprobs