Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
import torch | |
import torch.optim | |
from . import LegacyFairseqOptimizer, register_optimizer | |
class FairseqAdafactor(LegacyFairseqOptimizer): | |
def __init__(self, args, params): | |
super().__init__(args) | |
self._optimizer = Adafactor(params, **self.optimizer_config) | |
def add_args(parser): | |
"""Add optimizer-specific arguments to the parser.""" | |
# fmt: off | |
parser.add_argument('--adafactor-eps', default='(1e-30, 1e-3)', metavar="E", | |
help='epsilons for Adafactor optimizer') | |
parser.add_argument('--clip-threshold', type=float, default=1.0, metavar="C", | |
help='threshold for clipping update root mean square') | |
parser.add_argument('--decay-rate', type=float, default=-0.8, metavar="D", | |
help='decay rate of the second moment estimator') | |
parser.add_argument('--beta1', type=float, default=None, metavar="B", | |
help='beta for first moment estimator. Optional') | |
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', | |
help='weight decay') | |
parser.add_argument('--scale-parameter', action='store_true', | |
help='scale learning rate by root mean square of parameter') | |
parser.add_argument('--relative-step', action='store_true', | |
help='set learning rate to inverse square root of timestep,' | |
'otherwise use external learning rate') | |
parser.add_argument('--warmup-init', action='store_true', | |
help='use relative step for warm-up learning rate schedule') | |
# fmt: on | |
def optimizer_config(self): | |
""" | |
Return a kwarg dictionary that will be used to override optimizer | |
args stored in checkpoints. This allows us to load a checkpoint and | |
resume training using a different set of optimizer args, e.g., with a | |
different learning rate. | |
Note : Convergence issues empirically observed with fp16 on. | |
Might require search for appropriate configuration. | |
""" | |
return { | |
"lr": self.args.lr[0], | |
"eps": eval(self.args.adafactor_eps), | |
"clip_threshold": self.args.clip_threshold, | |
"decay_rate": self.args.decay_rate, | |
"beta1": self.args.beta1, | |
"weight_decay": self.args.weight_decay, | |
"scale_parameter": self.args.scale_parameter, # defaults to False | |
"relative_step": self.args.relative_step, # defaults to False | |
"warmup_init": self.args.warmup_init, | |
} | |
class Adafactor(torch.optim.Optimizer): | |
"""Implements Adafactor algorithm. | |
This implementation is based on: | |
`Adafactor: Adaptive Learning Rates with Sublinear Memory Cost` | |
(see https://arxiv.org/abs/1804.04235) | |
Note that this optimizer internally adjusts the learning rate | |
depending on the *scale_parameter*, *relative_step* and | |
*warmup_init* options. To use a manual (external) learning rate | |
schedule you should set `scale_parameter=False` and | |
`relative_step=False`. | |
Args: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): external learning rate (default: None) | |
eps (tuple[float, float]): regularization constans for square gradient | |
and parameter scale respectively (default: (1e-30, 1e-3)) | |
clip_threshold (float): threshold of root mean square of | |
final gradient update (default: 1.0) | |
decay_rate (float): coefficient used to compute running averages of square | |
gradient (default: -0.8) | |
beta1 (float): coefficient used for computing running averages of gradient | |
(default: None) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
scale_parameter (bool): if True, learning rate is scaled by root mean square of | |
parameter (default: True) | |
relative_step (bool): if True, time-dependent learning rate is computed | |
instead of external learning rate (default: True) | |
warmup_init (bool): time-dependent learning rate computation depends on | |
whether warm-up initialization is being used (default: False) | |
""" | |
def __init__( | |
self, | |
params, | |
lr=None, | |
eps=(1e-30, 1e-3), | |
clip_threshold=1.0, | |
decay_rate=-0.8, | |
beta1=None, | |
weight_decay=0.0, | |
scale_parameter=True, | |
relative_step=True, | |
warmup_init=False, | |
): | |
if lr is not None and relative_step: | |
raise ValueError("Cannot combine manual lr and relative_step options") | |
if warmup_init and not relative_step: | |
raise ValueError("warmup_init requires relative_step=True") | |
defaults = dict( | |
lr=lr, | |
eps=eps, | |
clip_threshold=clip_threshold, | |
decay_rate=decay_rate, | |
beta1=beta1, | |
weight_decay=weight_decay, | |
scale_parameter=scale_parameter, | |
relative_step=relative_step, | |
warmup_init=warmup_init, | |
) | |
super(Adafactor, self).__init__(params, defaults) | |
def supports_memory_efficient_fp16(self): | |
return True | |
def supports_flat_params(self): | |
return False | |
def _get_lr(self, param_group, param_state): | |
rel_step_sz = param_group["lr"] | |
if param_group["relative_step"]: | |
min_step = ( | |
1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2 | |
) | |
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"])) | |
param_scale = 1.0 | |
if param_group["scale_parameter"]: | |
param_scale = max(param_group["eps"][1], param_state["RMS"]) | |
return param_scale * rel_step_sz | |
def _get_options(self, param_group, param_shape): | |
factored = len(param_shape) >= 2 | |
use_first_moment = param_group["beta1"] is not None | |
return factored, use_first_moment | |
def _rms(self, tensor): | |
return tensor.norm(2) / (tensor.numel() ** 0.5) | |
def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col): | |
r_factor = ( | |
(exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)) | |
.rsqrt_() | |
.unsqueeze(-1) | |
) | |
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() | |
return torch.mul(r_factor, c_factor) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Args: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
grad = p.grad.data | |
if grad.dtype in {torch.float16, torch.bfloat16}: | |
grad = grad.float() | |
if grad.is_sparse: | |
raise RuntimeError("Adafactor does not support sparse gradients.") | |
state = self.state[p] | |
grad_shape = grad.shape | |
factored, use_first_moment = self._get_options(group, grad_shape) | |
# State Initialization | |
if len(state) == 0: | |
state["step"] = 0 | |
if use_first_moment: | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like(grad) | |
if factored: | |
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad) | |
state["exp_avg_sq_col"] = torch.zeros( | |
grad_shape[:-2] + grad_shape[-1:] | |
).to(grad) | |
else: | |
state["exp_avg_sq"] = torch.zeros_like(grad) | |
state["RMS"] = 0 | |
else: | |
if use_first_moment: | |
state["exp_avg"] = state["exp_avg"].to(grad) | |
if factored: | |
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) | |
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) | |
else: | |
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) | |
p_data_fp32 = p.data | |
if p.data.dtype in {torch.float16, torch.bfloat16}: | |
p_data_fp32 = p_data_fp32.float() | |
state["step"] += 1 | |
state["RMS"] = self._rms(p_data_fp32) | |
group["lr"] = self._get_lr(group, state) | |
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"]) | |
update = (grad**2) + group["eps"][0] | |
if factored: | |
exp_avg_sq_row = state["exp_avg_sq_row"] | |
exp_avg_sq_col = state["exp_avg_sq_col"] | |
exp_avg_sq_row.mul_(beta2t).add_( | |
update.mean(dim=-1), alpha=1.0 - beta2t | |
) | |
exp_avg_sq_col.mul_(beta2t).add_( | |
update.mean(dim=-2), alpha=1.0 - beta2t | |
) | |
# Approximation of exponential moving average of square of gradient | |
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) | |
update.mul_(grad) | |
else: | |
exp_avg_sq = state["exp_avg_sq"] | |
exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t) | |
update = exp_avg_sq.rsqrt().mul_(grad) | |
update.div_( | |
(self._rms(update) / group["clip_threshold"]).clamp_(min=1.0) | |
) | |
update.mul_(group["lr"]) | |
if use_first_moment: | |
exp_avg = state["exp_avg"] | |
exp_avg.mul_(group["beta1"]).add_(update, alpha=1 - group["beta1"]) | |
update = exp_avg | |
if group["weight_decay"] != 0: | |
p_data_fp32.add_( | |
p_data_fp32, alpha=-group["weight_decay"] * group["lr"] | |
) | |
p_data_fp32.add_(-update) | |
if p.data.dtype in {torch.float16, torch.bfloat16}: | |
p.data.copy_(p_data_fp32) | |
return loss | |