Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import math | |
from collections.abc import Collection | |
from dataclasses import dataclass, field | |
from typing import Any, List | |
import torch | |
import torch.distributed as dist | |
import torch.optim | |
from fairseq.dataclass import FairseqDataclass | |
from fairseq.optim import FairseqOptimizer, register_optimizer | |
from fairseq.optim.fused_adam import get_fused_adam_class | |
from omegaconf import II, OmegaConf | |
logger = logging.getLogger(__name__) | |
class FairseqAdamConfig(FairseqDataclass): | |
adam_betas: Any = field( | |
default=(0.9, 0.999), metadata={"help": "betas for Adam optimizer"} | |
) | |
adam_eps: float = field( | |
default=1e-8, metadata={"help": "epsilon for Adam optimizer"} | |
) | |
weight_decay: float = field(default=0.0, metadata={"help": "weight decay"}) | |
use_old_adam: bool = field( | |
default=False, metadata={"help": "Use fairseq.optim.adam.Adam"} | |
) | |
fp16_adam_stats: bool = field( | |
default=False, metadata={"help": "use FP16 stats (with automatic scaling)"} | |
) | |
# TODO common vars below in parent | |
tpu: bool = II("common.tpu") | |
lr: List[float] = II("optimization.lr") | |
class FairseqAdam(FairseqOptimizer): | |
"""Adam optimizer for fairseq. | |
Important note: this optimizer corresponds to the "AdamW" variant of | |
Adam in its weight decay behavior. As such, it is most closely | |
analogous to torch.optim.AdamW from PyTorch. | |
""" | |
def __init__(self, cfg: FairseqAdamConfig, params): | |
super().__init__(cfg) | |
fused_adam_cls = get_fused_adam_class() | |
use_fused_adam = ( | |
not getattr(cfg, "use_old_adam", False) | |
and fused_adam_cls is not None | |
and torch.cuda.is_available() | |
) | |
if getattr(cfg, "tpu", False): | |
if self.cfg.fp16_adam_stats: | |
raise NotImplementedError("--fp16-adam-stats is only supported on GPU") | |
# on TPUs we use the Adam defined here, since it | |
# automatically casts gradients to FP32 | |
self._optimizer = Adam(params, **self.optimizer_config) | |
elif use_fused_adam: | |
logger.info("using FusedAdam") | |
self._optimizer = fused_adam_cls( | |
params, use_fp16_stats=self.cfg.fp16_adam_stats, **self.optimizer_config | |
) | |
else: | |
if self.cfg.fp16_adam_stats: | |
raise NotImplementedError( | |
"--fp16-adam-stats is only supported with FusedAdamV1" | |
) | |
self._optimizer = Adam(params, **self.optimizer_config) | |
def optimizer_config(self): | |
""" | |
Return a kwarg dictionary that will be used to override optimizer | |
args stored in checkpoints. This allows us to load a checkpoint and | |
resume training using a different set of optimizer args, e.g., with a | |
different learning rate. | |
""" | |
return { | |
"lr": self.cfg.lr[0] | |
if isinstance(self.cfg.lr, Collection) | |
else self.cfg.lr, | |
"betas": eval(self.cfg.adam_betas) | |
if isinstance(self.cfg.adam_betas, str) | |
else OmegaConf.to_container(self.cfg.adam_betas), | |
"eps": self.cfg.adam_eps, | |
"weight_decay": self.cfg.weight_decay, | |
} | |
def average_params(self): | |
"""Reduce Params is only used during BMUF distributed training.""" | |
state_dict = self.optimizer.state_dict() | |
total_gpus = float(dist.get_world_size()) | |
for _, value in state_dict["state"].items(): | |
value["exp_avg"] /= total_gpus | |
value["exp_avg_sq"] /= total_gpus | |
dist.all_reduce(value["exp_avg"], op=dist.ReduceOp.SUM) | |
dist.all_reduce(value["exp_avg_sq"], op=dist.ReduceOp.SUM) | |
class Adam(torch.optim.Optimizer): | |
r"""Implements Adam algorithm. | |
This implementation is modified from torch.optim.Adam based on: | |
`Fixed Weight Decay Regularization in Adam` | |
(see https://arxiv.org/abs/1711.05101) | |
It has been proposed in `Adam: A Method for Stochastic Optimization`_. | |
Args: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | |
algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
.. _Adam\: A Method for Stochastic Optimization: | |
https://arxiv.org/abs/1412.6980 | |
.. _On the Convergence of Adam and Beyond: | |
https://openreview.net/forum?id=ryQu7f-RZ | |
""" | |
def __init__( | |
self, | |
params, | |
lr=1e-3, | |
betas=(0.9, 0.999), | |
eps=1e-8, | |
weight_decay=0, | |
amsgrad=False, | |
): | |
defaults = dict( | |
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad | |
) | |
super(Adam, self).__init__(params, defaults) | |
def supports_memory_efficient_fp16(self): | |
return True | |
def supports_flat_params(self): | |
return True | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Args: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
grad = p.grad.data | |
if grad.dtype in {torch.float16, torch.bfloat16}: | |
grad = grad.float() | |
if grad.is_sparse: | |
raise RuntimeError( | |
"Adam does not support sparse gradients, please consider SparseAdam instead" | |
) | |
amsgrad = group.get("amsgrad", False) | |
p_data_fp32 = p.data | |
if p.data.dtype in {torch.float16, torch.bfloat16}: | |
p_data_fp32 = p_data_fp32.float() | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state["step"] = 0 | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like(p_data_fp32) | |
# Exponential moving average of squared gradient values | |
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) | |
if amsgrad: | |
# Maintains max of all exp. moving avg. of sq. grad. values | |
state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32) | |
else: | |
state["exp_avg"] = state["exp_avg"].to(p_data_fp32) | |
state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) | |
if amsgrad: | |
state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to( | |
p_data_fp32 | |
) | |
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] | |
if amsgrad: | |
max_exp_avg_sq = state["max_exp_avg_sq"] | |
beta1, beta2 = group["betas"] | |
state["step"] += 1 | |
# Decay the first and second moment running average coefficient | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
if amsgrad: | |
# Maintains the maximum of all 2nd moment running avg. till now | |
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) | |
# Use the max. for normalizing running avg. of gradient | |
denom = max_exp_avg_sq.sqrt().add_(group["eps"]) | |
else: | |
denom = exp_avg_sq.sqrt().add_(group["eps"]) | |
bias_correction1 = 1 - beta1 ** state["step"] | |
bias_correction2 = 1 - beta2 ** state["step"] | |
step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 | |
if group["weight_decay"] != 0: | |
p_data_fp32.add_( | |
p_data_fp32, alpha=-group["weight_decay"] * group["lr"] | |
) | |
p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size) | |
if p.data.dtype in {torch.float16, torch.bfloat16}: | |
p.data.copy_(p_data_fp32) | |
return loss | |