TomatoCocotree
上传
6a62ffb
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import torch
from fairseq import optim
from omegaconf import DictConfig
logger = logging.getLogger(__name__)
class AMPOptimizer(optim.FairseqOptimizer):
"""
Wrap an *optimizer* to support AMP (automatic mixed precision) training.
"""
def __init__(self, cfg: DictConfig, params, fp32_optimizer, **kwargs):
super().__init__(cfg.optimizer)
self.fp32_optimizer = fp32_optimizer
amp_kwargs = {"init_scale": cfg.common.fp16_init_scale}
if getattr(cfg.common, "amp_scale_window", None) is not None:
amp_kwargs["growth_interval"] = cfg.common.amp_init_scale
self._grad_scaler = torch.cuda.amp.GradScaler(**amp_kwargs)
self.min_loss_scale = cfg.common.min_loss_scale
@classmethod
def build_optimizer(cls, cfg: DictConfig, params, **kwargs):
"""
Args:
cfg (omegaconf.DictConfig): fairseq args
params (iterable): iterable of parameters to optimize
"""
fp32_optimizer = optim.build_optimizer(cfg.optimizer, params)
return cls(cfg, params, fp32_optimizer, **kwargs)
def backward(self, loss):
"""Computes the sum of gradients of the given tensor w.r.t. graph leaves.
Compared to :func:`fairseq.optim.FairseqOptimizer.backward`, this
function additionally dynamically scales the loss to avoid gradient
underflow.
"""
self._grad_scaler.scale(loss).backward()
def step(self):
self.scaler.step(self.fp32_optimizer)
self.scaler.update()
def clip_grad_norm(self, max_norm, aggregate_norm_fn=None):
"""Clips gradient norm."""
self.scaler.unscale_(self.optimizer)
grad_norm = self.fp32_optimizer.clip_grad_norm(max_norm, aggregate_norm_fn)
if not torch.isfinite(grad_norm).all():
new_loss_scale = self.next_loss_scale
if new_loss_scale <= self.min_loss_scale:
raise FloatingPointError(
(
"AMP: Minimum loss scale reached ({}). Your loss is probably exploding. "
"Try restarting training or use fp32. {}"
).format(self.min_loss_scale, new_loss_scale)
)
else:
logger.info(
"AMP: overflow detected, setting scale to " f"to {new_loss_scale}"
)
return grad_norm
@property
def scaler(self):
return self._grad_scaler
@property
def next_loss_scale(self):
return self.scaler.get_scale() * self.scaler.get_backoff_factor()
@property
def optimizer(self):
return self.fp32_optimizer.optimizer
@optimizer.setter
def optimizer(self, optimizer):
self.fp32_optimizer.optimizer = optimizer
@property
def lr_scheduler(self):
return getattr(self.fp32_optimizer, "lr_scheduler", None)
@property
def optimizer_config(self):
return self.fp32_optimizer.optimizer_config
def get_lr(self):
return self.fp32_optimizer.get_lr()
def set_lr(self, lr):
self.fp32_optimizer.set_lr(lr)
def all_reduce_grads(self, module):
self.fp32_optimizer.all_reduce_grads(module)
@property
def supports_flat_params(self):
return self.fp32_optimizer.supports_flat_params