Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import os | |
import numpy as np | |
import torch | |
from fairseq import utils | |
from fairseq.data import ( | |
ConcatDataset, | |
Dictionary, | |
IdDataset, | |
MaskTokensDataset, | |
NestedDictionaryDataset, | |
NumelDataset, | |
NumSamplesDataset, | |
PadDataset, | |
PrependTokenDataset, | |
RawLabelDataset, | |
ResamplingDataset, | |
SortDataset, | |
TokenBlockDataset, | |
data_utils, | |
encoders, | |
) | |
from fairseq.tasks import LegacyFairseqTask, register_task | |
logger = logging.getLogger(__name__) | |
class MultiLingualMaskedLMTask(LegacyFairseqTask): | |
"""Task for training masked language models (e.g., BERT, RoBERTa).""" | |
def add_args(parser): | |
"""Add task-specific arguments to the parser.""" | |
parser.add_argument( | |
"data", | |
help="colon separated path to data directories list, \ | |
will be iterated upon during epochs in round-robin manner", | |
) | |
parser.add_argument( | |
"--sample-break-mode", | |
default="complete", | |
choices=["none", "complete", "complete_doc", "eos"], | |
help='If omitted or "none", fills each sample with tokens-per-sample ' | |
'tokens. If set to "complete", splits samples only at the end ' | |
"of sentence, but may include multiple sentences per sample. " | |
'"complete_doc" is similar but respects doc boundaries. ' | |
'If set to "eos", includes only one sentence per sample.', | |
) | |
parser.add_argument( | |
"--tokens-per-sample", | |
default=512, | |
type=int, | |
help="max number of total tokens over all segments " | |
"per sample for BERT dataset", | |
) | |
parser.add_argument( | |
"--mask-prob", | |
default=0.15, | |
type=float, | |
help="probability of replacing a token with mask", | |
) | |
parser.add_argument( | |
"--leave-unmasked-prob", | |
default=0.1, | |
type=float, | |
help="probability that a masked token is unmasked", | |
) | |
parser.add_argument( | |
"--random-token-prob", | |
default=0.1, | |
type=float, | |
help="probability of replacing a token with a random token", | |
) | |
parser.add_argument( | |
"--freq-weighted-replacement", | |
action="store_true", | |
help="sample random replacement words based on word frequencies", | |
) | |
parser.add_argument( | |
"--mask-whole-words", | |
default=False, | |
action="store_true", | |
help="mask whole words; you may also want to set --bpe", | |
) | |
parser.add_argument( | |
"--multilang-sampling-alpha", | |
type=float, | |
default=1.0, | |
help="smoothing alpha for sample rations across multiple datasets", | |
) | |
def __init__(self, args, dictionary): | |
super().__init__(args) | |
self.dictionary = dictionary | |
self.seed = args.seed | |
# add mask token | |
self.mask_idx = dictionary.add_symbol("<mask>") | |
def setup_task(cls, args, **kwargs): | |
paths = utils.split_paths(args.data) | |
assert len(paths) > 0 | |
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) | |
logger.info("dictionary: {} types".format(len(dictionary))) | |
return cls(args, dictionary) | |
def _get_whole_word_mask(self): | |
# create masked input and targets | |
if self.args.mask_whole_words: | |
bpe = encoders.build_bpe(self.args) | |
if bpe is not None: | |
def is_beginning_of_word(i): | |
if i < self.source_dictionary.nspecial: | |
# special elements are always considered beginnings | |
return True | |
tok = self.source_dictionary[i] | |
if tok.startswith("madeupword"): | |
return True | |
try: | |
return bpe.is_beginning_of_word(tok) | |
except ValueError: | |
return True | |
mask_whole_words = torch.ByteTensor( | |
list(map(is_beginning_of_word, range(len(self.source_dictionary)))) | |
) | |
else: | |
mask_whole_words = None | |
return mask_whole_words | |
def _get_sample_prob(self, dataset_lens): | |
""" | |
Get smoothed sampling porbability by languages. This helps low resource | |
languages by upsampling them. | |
""" | |
prob = dataset_lens / dataset_lens.sum() | |
smoothed_prob = prob**self.args.multilang_sampling_alpha | |
smoothed_prob = smoothed_prob / smoothed_prob.sum() | |
return smoothed_prob | |
def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
"""Load a given dataset split. | |
Args: | |
split (str): name of the split (e.g., train, valid, test) | |
""" | |
paths = utils.split_paths(self.args.data) | |
assert len(paths) > 0 | |
data_path = paths[(epoch - 1) % len(paths)] | |
languages = sorted( | |
name | |
for name in os.listdir(data_path) | |
if os.path.isdir(os.path.join(data_path, name)) | |
) | |
logger.info("Training on {0} languages: {1}".format(len(languages), languages)) | |
logger.info( | |
"Language to id mapping: ", {lang: id for id, lang in enumerate(languages)} | |
) | |
mask_whole_words = self._get_whole_word_mask() | |
lang_datasets = [] | |
for lang_id, language in enumerate(languages): | |
split_path = os.path.join(data_path, language, split) | |
dataset = data_utils.load_indexed_dataset( | |
split_path, | |
self.source_dictionary, | |
self.args.dataset_impl, | |
combine=combine, | |
) | |
if dataset is None: | |
raise FileNotFoundError( | |
"Dataset not found: {} ({})".format(split, split_path) | |
) | |
# create continuous blocks of tokens | |
dataset = TokenBlockDataset( | |
dataset, | |
dataset.sizes, | |
self.args.tokens_per_sample - 1, # one less for <s> | |
pad=self.source_dictionary.pad(), | |
eos=self.source_dictionary.eos(), | |
break_mode=self.args.sample_break_mode, | |
) | |
logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) | |
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) | |
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) | |
src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( | |
dataset, | |
self.source_dictionary, | |
pad_idx=self.source_dictionary.pad(), | |
mask_idx=self.mask_idx, | |
seed=self.args.seed, | |
mask_prob=self.args.mask_prob, | |
leave_unmasked_prob=self.args.leave_unmasked_prob, | |
random_token_prob=self.args.random_token_prob, | |
freq_weighted_replacement=self.args.freq_weighted_replacement, | |
mask_whole_words=mask_whole_words, | |
) | |
lang_dataset = NestedDictionaryDataset( | |
{ | |
"net_input": { | |
"src_tokens": PadDataset( | |
src_dataset, | |
pad_idx=self.source_dictionary.pad(), | |
left_pad=False, | |
), | |
"src_lengths": NumelDataset(src_dataset, reduce=False), | |
}, | |
"target": PadDataset( | |
tgt_dataset, | |
pad_idx=self.source_dictionary.pad(), | |
left_pad=False, | |
), | |
"nsentences": NumSamplesDataset(), | |
"ntokens": NumelDataset(src_dataset, reduce=True), | |
"lang_id": RawLabelDataset([lang_id] * src_dataset.sizes.shape[0]), | |
}, | |
sizes=[src_dataset.sizes], | |
) | |
lang_datasets.append(lang_dataset) | |
dataset_lengths = np.array( | |
[len(d) for d in lang_datasets], | |
dtype=float, | |
) | |
logger.info( | |
"loaded total {} blocks for all languages".format( | |
dataset_lengths.sum(), | |
) | |
) | |
if split == self.args.train_subset: | |
# For train subset, additionally up or down sample languages. | |
sample_probs = self._get_sample_prob(dataset_lengths) | |
logger.info( | |
"Sample probability by language: ", | |
{ | |
lang: "{0:.4f}".format(sample_probs[id]) | |
for id, lang in enumerate(languages) | |
}, | |
) | |
size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths | |
logger.info( | |
"Up/Down Sampling ratio by language: ", | |
{ | |
lang: "{0:.2f}".format(size_ratio[id]) | |
for id, lang in enumerate(languages) | |
}, | |
) | |
resampled_lang_datasets = [ | |
ResamplingDataset( | |
lang_datasets[i], | |
size_ratio=size_ratio[i], | |
seed=self.args.seed, | |
epoch=epoch, | |
replace=size_ratio[i] >= 1.0, | |
) | |
for i, d in enumerate(lang_datasets) | |
] | |
dataset = ConcatDataset(resampled_lang_datasets) | |
else: | |
dataset = ConcatDataset(lang_datasets) | |
lang_splits = [split] | |
for lang_id, lang_dataset in enumerate(lang_datasets): | |
split_name = split + "_" + languages[lang_id] | |
lang_splits.append(split_name) | |
self.datasets[split_name] = lang_dataset | |
# [TODO]: This is hacky for now to print validation ppl for each | |
# language individually. Maybe need task API changes to allow it | |
# in more generic ways. | |
if split in self.args.valid_subset: | |
self.args.valid_subset = self.args.valid_subset.replace( | |
split, ",".join(lang_splits) | |
) | |
with data_utils.numpy_seed(self.args.seed + epoch): | |
shuffle = np.random.permutation(len(dataset)) | |
self.datasets[split] = SortDataset( | |
dataset, | |
sort_order=[ | |
shuffle, | |
dataset.sizes, | |
], | |
) | |
def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True): | |
src_dataset = PadDataset( | |
TokenBlockDataset( | |
src_tokens, | |
src_lengths, | |
self.args.tokens_per_sample - 1, # one less for <s> | |
pad=self.source_dictionary.pad(), | |
eos=self.source_dictionary.eos(), | |
break_mode="eos", | |
), | |
pad_idx=self.source_dictionary.pad(), | |
left_pad=False, | |
) | |
src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos()) | |
src_dataset = NestedDictionaryDataset( | |
{ | |
"id": IdDataset(), | |
"net_input": { | |
"src_tokens": src_dataset, | |
"src_lengths": NumelDataset(src_dataset, reduce=False), | |
}, | |
}, | |
sizes=src_lengths, | |
) | |
if sort: | |
src_dataset = SortDataset(src_dataset, sort_order=[src_lengths]) | |
return src_dataset | |
def source_dictionary(self): | |
return self.dictionary | |
def target_dictionary(self): | |
return self.dictionary | |