TomatoCocotree
上传
6a62ffb
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import logging
import os
import torch
import json
from argparse import Namespace
from dataclasses import dataclass, field
from typing import Optional, Any
from fairseq.data import AddTargetDataset, Dictionary, encoders
from fairseq.tasks.audio_pretraining import AudioPretrainingTask, AudioPretrainingConfig
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.configs import GenerationConfig
from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel
from . import register_task
from .. import utils
from ..logging import metrics
logger = logging.getLogger(__name__)
class LabelEncoder(object):
def __init__(self, dictionary):
self.dictionary = dictionary
def __call__(self, label):
return self.dictionary.encode_line(
label, append_eos=False, add_if_not_exist=False
)
def label_len_fn(label):
return len(label.split(" "))
@dataclass
class NLUFinetuningConfig(AudioPretrainingConfig):
# Options for reporting WER metrics during validation. Only applicable to
# Seq2Seq models during fine-tuning
eval_wer: bool = field(
default=False, metadata={"help": "compute WER for Seq2Seq models"}
)
eval_wer_parse: bool = field(
default=False, metadata={"help": "compute WER for Seq2Seq models"}
)
eval_wer_config: GenerationConfig = field(
default_factory=lambda: GenerationConfig(),
metadata={"help": "beam search config for evaluating wer during training"},
)
eval_wer_tokenizer: Any = field(
default=None,
metadata={"help": "tokenizer config for evaluating wer during training"},
)
eval_wer_post_process: str = field(
default="letter",
metadata={
"help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)"
},
)
eval_bleu: bool = field(
default=False, metadata={"help": "evaluation with BLEU scores"}
)
eval_bleu_detok: Optional[str] = field(
default=None,
metadata={
"help": "detokenize before computing BLEU (e.g., 'moses'); "
"required if using --eval-bleu; use 'space' to disable "
"detokenization; see fairseq.data.encoders for other options"
},
)
eval_bleu_detok_args: str = field(
default="{}", metadata={"help": "args for building the tokenizer, if needed"}
)
eval_tokenized_bleu: bool = field(
default=False, metadata={"help": "compute tokenized BLEU instead of sacrebleu"}
)
eval_bleu_remove_bpe: Optional[str] = field(
default=None, metadata={"help": "remove BPE before computing BLEU"}
)
eval_bleu_args: str = field(
default="{}",
metadata={
"help": "generation args for BLUE scoring, e.g., "
'\'{"beam": 4, "lenpen": 0.6}\''
},
)
eval_bleu_print_samples: bool = field(
default=False, metadata={"help": "print sample generations during validation"}
)
autoregressive: bool = field(
default=False,
metadata={
"help": "required for autoregressive decoders (like seq2seq models); "
"adds 'prev_output_tokens' to input and appends eos to target"
},
)
@register_task("nlu_finetuning", dataclass=NLUFinetuningConfig)
class NLUFinetuningTask(AudioPretrainingTask):
""" """
cfg: NLUFinetuningConfig
def __init__(
self,
cfg: NLUFinetuningConfig,
):
super().__init__(cfg)
self.blank_symbol = "<s>"
self.state.add_factory("target_dictionary", self.load_target_dictionary)
def load_target_dictionary(self):
if self.cfg.labels:
dict_path = os.path.join(self.cfg.data, f"dict.{self.cfg.labels}.txt")
return Dictionary.load(dict_path)
return None
def load_dataset(self, split: str, task_cfg: NLUFinetuningConfig = None, **kwargs):
super().load_dataset(split, task_cfg, **kwargs)
task_cfg = task_cfg or self.cfg
assert task_cfg.labels is not None
text_compression_level = getattr(
TextCompressionLevel, str(self.cfg.text_compression_level)
)
data_path = self.cfg.data
label_path = os.path.join(data_path, f"{split}.{task_cfg.labels}")
skipped_indices = getattr(self.datasets[split], "skipped_indices", set())
text_compressor = TextCompressor(level=text_compression_level)
with open(label_path, "r") as f:
labels = [
text_compressor.compress(l)
for i, l in enumerate(f)
if i not in skipped_indices
]
assert len(labels) == len(self.datasets[split]), (
f"labels length ({len(labels)}) and dataset length "
f"({len(self.datasets[split])}) do not match"
)
process_label = LabelEncoder(self.target_dictionary)
self.datasets[split] = AddTargetDataset(
self.datasets[split],
labels,
pad=self.target_dictionary.pad(),
eos=self.target_dictionary.eos(),
batch_targets=True,
process_label=process_label,
label_len_fn=label_len_fn,
add_to_input=task_cfg.get("autoregressive", False),
text_compression_level=text_compression_level,
)
@property
def target_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self.state.target_dictionary
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
if self.cfg.eval_wer_parse and self.cfg.autoregressive:
metrics = self._inference_with_wer_parse(
self.sequence_generator, sample, model
)
logging_output["_num_char_errors"] = metrics["num_char_errors"]
logging_output["_num_chars"] = metrics["num_chars"]
logging_output["_num_word_errors"] = metrics["num_word_errors"]
logging_output["_num_words"] = metrics["num_words"]
logging_output["_num_em_errors"] = metrics["num_em_errors"]
logging_output["_num_ems"] = metrics["num_ems"]
logging_output["_num_tree_errors"] = metrics["num_tree_errors"]
logging_output["_num_trees"] = metrics["num_trees"]
if self.cfg.eval_wer and self.cfg.autoregressive:
metrics = self._inference_with_wer(self.sequence_generator, sample, model)
logging_output["_num_char_errors"] = metrics["num_char_errors"]
logging_output["_num_chars"] = metrics["num_chars"]
logging_output["_num_word_errors"] = metrics["num_word_errors"]
logging_output["_num_words"] = metrics["num_words"]
if self.cfg.eval_bleu and self.cfg.autoregressive:
metrics = self._inference_with_bleu(self.sequence_generator, sample, model)
logging_output["_bleu_sys_len"] = metrics.sys_len
logging_output["_bleu_ref_len"] = metrics.ref_len
# we split counts into separate entries so that they can be
# summed efficiently across workers using fast-stat-sync
assert len(metrics.counts) == 4
for i in range(4):
logging_output[f"_bleu_counts_{i}"] = metrics.counts[i]
logging_output[f"_bleu_totals_{i}"] = metrics.totals[i]
return loss, sample_size, logging_output
def build_model(self, model_cfg: FairseqDataclass):
model = super().build_model(model_cfg)
if (self.cfg.eval_wer or self.cfg.eval_wer_parse) and self.cfg.autoregressive:
self.sequence_generator = self.build_generator(
[model],
self.cfg.eval_wer_config,
)
if self.cfg.eval_wer_tokenizer:
self.tokenizer = encoders.build_tokenizer(self.cfg.eval_wer_tokenizer)
else:
self.tokenizer = None
if self.cfg.eval_bleu and self.cfg.autoregressive:
assert self.cfg.eval_bleu_detok is not None, (
"--eval-bleu-detok is required if using --eval-bleu; "
"try --eval-bleu-detok=moses (or --eval-bleu-detok=space "
"to disable detokenization, e.g., when using sentencepiece)"
)
detok_args = json.loads(self.cfg.eval_bleu_detok_args)
self.tokenizer = encoders.build_tokenizer(
Namespace(tokenizer=self.cfg.eval_bleu_detok, **detok_args)
)
gen_args = json.loads(self.cfg.eval_bleu_args)
gen_args = Namespace(**gen_args)
self.sequence_generator = self.build_generator([model], gen_args)
return model
def _inference_with_wer_parse(self, generator, sample, model):
import editdistance
def decode(toks):
s = self.target_dictionary.string(
toks.int().cpu(),
self.cfg.eval_wer_post_process,
escape_unk=True,
)
if self.tokenizer:
s = self.tokenizer.decode(s)
return s
def decode_to_list(toks):
def token_string(i):
if i == self.target_dictionary.unk():
return self.target_dictionary.unk_string(False)
else:
return self.target_dictionary[i]
return [token_string(i) for i in toks]
def is_ont_token(token):
return "[" in token or "]" in token
def post_process(l):
o = []
for w in l:
if w == self.target_dictionary.eos_word or w == "|":
continue
if w == "_":
o.append(" ")
else:
o.append(w)
if is_ont_token(w):
o.append(" ")
return o
num_word_errors, num_char_errors = 0, 0
num_chars, num_words = 0, 0
num_em_errors, num_ems = 0, 0
num_tree_errors, num_trees = 0, 0
gen_out = self.inference_step(generator, [model], sample, None)
for i in range(len(gen_out)):
hyp_tokens = gen_out[i][0]["tokens"]
# hyp = decode(hyp_tokens)
ref_tokens = utils.strip_pad(
sample["target"][i], self.target_dictionary.pad()
)
# ref = decode(ref_tokens)
hyp_list = decode_to_list(hyp_tokens)
ref_list = decode_to_list(ref_tokens)
hyp_list = post_process(hyp_list)
ref_list = post_process(ref_list)
hyp = "".join(hyp_list).strip()
ref = "".join(ref_list).strip()
num_chars += len(ref)
num_char_errors += editdistance.eval(hyp, ref)
hyp_words = hyp.split()
ref_words = ref.split()
hyp_tree = [word for word in hyp_list if ("[" in word or "]" in word)]
ref_tree = [word for word in ref_list if ("[" in word or "]" in word)]
# num_word_errors += editdistance.eval(hyp_words, ref_words)
hyp_before = decode(hyp_tokens).split()
ref_before = decode(ref_tokens).split()
num_word_errors += editdistance.eval(hyp_before, ref_before)
num_words += len(ref_before)
if hyp != ref:
num_em_errors += 1
if hyp_tree != ref_tree:
num_tree_errors += 1
num_ems += 1
num_trees += 1
return {
"num_char_errors": num_char_errors,
"num_chars": num_chars,
"num_word_errors": num_word_errors,
"num_words": num_words,
"num_ems": num_ems,
"num_em_errors": num_em_errors,
"num_trees": num_trees,
"num_tree_errors": num_tree_errors,
}
def _inference_with_wer(self, generator, sample, model):
import editdistance
def decode(toks):
s = self.target_dictionary.string(
toks.int().cpu(),
self.cfg.eval_wer_post_process,
escape_unk=True,
)
if self.tokenizer:
s = self.tokenizer.decode(s)
return s
num_word_errors, num_char_errors = 0, 0
num_chars, num_words = 0, 0
gen_out = self.inference_step(generator, [model], sample, None)
for i in range(len(gen_out)):
hyp = decode(gen_out[i][0]["tokens"])
ref = decode(
utils.strip_pad(sample["target"][i], self.target_dictionary.pad()),
)
num_char_errors += editdistance.eval(hyp, ref)
num_chars += len(ref)
hyp_words = hyp.split()
ref_words = ref.split()
num_word_errors += editdistance.eval(hyp_words, ref_words)
num_words += len(ref_words)
return {
"num_char_errors": num_char_errors,
"num_chars": num_chars,
"num_word_errors": num_word_errors,
"num_words": num_words,
}
def _inference_with_bleu(self, generator, sample, model):
import sacrebleu
def decode(toks, is_ref):
s = self.target_dictionary.string(
toks.int().cpu(),
self.cfg.eval_bleu_remove_bpe,
# The default unknown string in fairseq is `<unk>`, but
# this is tokenized by sacrebleu as `< unk >`, inflating
# BLEU scores. Instead, we use a somewhat more verbose
# alternative that is unlikely to appear in the real
# reference, but doesn't get split into multiple tokens.
unk_string=("UNKNOWNTOKENINREF" if is_ref else "UNKNOWNTOKENINHYP"),
)
if self.tokenizer:
s = self.tokenizer.decode(s)
return s
gen_out = self.inference_step(generator, [model], sample)
hyps, refs = [], []
for i in range(len(gen_out)):
hyps.append(decode(gen_out[i][0]["tokens"], is_ref=False))
refs.append(
decode(
utils.strip_pad(sample["target"][i], self.target_dictionary.pad()),
is_ref=True, # don't count <unk> as matches to the hypo
)
)
if self.cfg.eval_bleu_print_samples:
logger.info("H-{} {}".format(sample["id"][0], hyps[0]))
logger.info("T-{} {}".format(sample["id"][0], refs[0]))
eval_tokenization = "none" if self.cfg.eval_tokenized_bleu else "13a"
return sacrebleu.corpus_bleu(hyps, [refs], tokenize=eval_tokenization)
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
if self.cfg.eval_wer or self.cfg.eval_wer_parse:
zero = torch.scalar_tensor(0.0)
num_char_errors = sum(
log.get("_num_char_errors", zero) for log in logging_outputs
)
num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs)
num_word_errors = sum(
log.get("_num_word_errors", zero) for log in logging_outputs
)
num_words = sum(log.get("_num_words", zero) for log in logging_outputs)
metrics.log_scalar("_num_char_errors", num_char_errors)
metrics.log_scalar("_num_chars", num_chars)
metrics.log_scalar("_num_word_errors", num_word_errors)
metrics.log_scalar("_num_words", num_words)
if num_chars > 0:
metrics.log_derived(
"uer",
lambda meters: meters["_num_char_errors"].sum
* 100.0
/ meters["_num_chars"].sum
if meters["_num_chars"].sum > 0
else float("nan"),
)
if num_words > 0:
metrics.log_derived(
"wer",
lambda meters: meters["_num_word_errors"].sum
* 100.0
/ meters["_num_words"].sum
if meters["_num_words"].sum > 0
else float("nan"),
)
if self.cfg.eval_wer_parse:
num_em_errors = sum(
log.get("_num_em_errors", zero) for log in logging_outputs
)
num_ems = sum(log.get("_num_ems", zero) for log in logging_outputs)
metrics.log_scalar("_num_em_errors", num_em_errors)
metrics.log_scalar("_num_ems", num_ems)
num_tree_errors = sum(
log.get("_num_tree_errors", zero) for log in logging_outputs
)
num_trees = sum(log.get("_num_trees", zero) for log in logging_outputs)
metrics.log_scalar("_num_tree_errors", num_tree_errors)
metrics.log_scalar("_num_trees", num_trees)
if num_ems > 0:
metrics.log_derived(
"em_error",
lambda meters: meters["_num_em_errors"].sum
* 100.0
/ meters["_num_ems"].sum
if meters["_num_ems"].sum > 0
else float("nan"),
)
if num_trees > 0:
metrics.log_derived(
"tree_error",
lambda meters: meters["_num_tree_errors"].sum
* 100.0
/ meters["_num_trees"].sum
if meters["_num_trees"].sum > 0
else float("nan"),
)
if self.cfg.eval_bleu:
len_keys = ["_bleu_sys_len", "_bleu_ref_len"]
count_keys = [f"_bleu_counts_{i}" for i in range(4)]
total_keys = [f"_bleu_totals_{i}" for i in range(4)]
for k in len_keys + count_keys + total_keys:
metrics.log_scalar(k, sum(log.get(k, 0) for log in logging_outputs))
import sacrebleu
metrics.log_derived(
"bleu",
lambda meters: sacrebleu.compute_bleu(
correct=[meters[k].sum for k in count_keys],
total=[meters[k].sum for k in total_keys],
sys_len=meters["_bleu_sys_len"].sum,
ref_len=meters["_bleu_ref_len"].sum,
smooth_method="exp",
).score,
)