Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import os | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import numpy as np | |
from omegaconf import II, MISSING | |
from fairseq import utils | |
from fairseq.data import ( | |
AppendTokenDataset, | |
Dictionary, | |
IdDataset, | |
NestedDictionaryDataset, | |
NumelDataset, | |
PadDataset, | |
PrependTokenDataset, | |
StripTokenDataset, | |
TokenBlockDataset, | |
data_utils, | |
) | |
from fairseq.data.shorten_dataset import maybe_shorten_dataset | |
from fairseq.data.span_mask_tokens_dataset import SpanMaskedTokensDataset | |
from fairseq.dataclass import ChoiceEnum, FairseqDataclass | |
from fairseq.tasks import FairseqTask, register_task | |
from ..data.indexed_dataset import get_available_dataset_impl | |
logger = logging.getLogger(__name__) | |
SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) | |
SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) | |
class SpanMaskedLMConfig(FairseqDataclass): | |
shuffle: bool = field( | |
default=False, | |
) | |
noise_density: float = field( | |
default=0.15, | |
metadata={"help": "What fraction of the tokens to select as noise"}, | |
) | |
mean_noise_span_length: float = field( | |
default=3, | |
metadata={"help": "Mean noise span length, must be >= 1"}, | |
) | |
data: str = field( | |
default=MISSING, | |
metadata={ | |
"help": "colon separated path to data directories list, " | |
"will be iterated upon during epochs in round-robin manner" | |
}, | |
) | |
sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( | |
default="none", | |
metadata={ | |
"help": 'If omitted or "none", fills each sample with tokens-per-sample ' | |
'tokens. If set to "complete", splits samples only at the end ' | |
"of sentence, but may include multiple sentences per sample. " | |
'"complete_doc" is similar but respects doc boundaries. ' | |
'If set to "eos", includes only one sentence per sample.' | |
}, | |
) | |
tokens_per_sample: int = field( | |
default=1024, | |
metadata={"help": "max number of tokens per sample for LM dataset"}, | |
) | |
shorten_method: SHORTEN_METHOD_CHOICES = field( | |
default="none", | |
metadata={ | |
"help": "if not none, shorten sequences that exceed --tokens-per-sample" | |
}, | |
) | |
shorten_data_split_list: str = field( | |
default="", | |
metadata={ | |
"help": "comma-separated list of dataset splits to apply shortening to, " | |
'e.g., "train,valid" (default: all dataset splits)' | |
}, | |
) | |
seed: int = II("common.seed") | |
dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( | |
"dataset.dataset_impl" | |
) | |
max_source_positions: int = field( | |
default=1024, metadata={"help": "max number of tokens in the source sequence"} | |
) | |
max_target_positions: int = field( | |
default=1024, metadata={"help": "max number of tokens in the target sequence"} | |
) | |
include_target_tokens: bool = field( | |
default=False, | |
metadata={ | |
"help": "include target tokens in model input. this is used for data2vec" | |
}, | |
) | |
class SpanMaskedLMTask(FairseqTask): | |
""" | |
Span masked language modeling task. (ie. T5) | |
""" | |
cfg: SpanMaskedLMConfig | |
def __init__(self, cfg, dictionary): | |
super().__init__(cfg) | |
self.dictionary = dictionary | |
def setup_task(cls, cfg: SpanMaskedLMConfig, **kwargs): | |
"""Setup the task.""" | |
paths = utils.split_paths(cfg.data) | |
assert len(paths) > 0 | |
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) | |
logger.info("dictionary: {} types".format(len(dictionary))) | |
if not hasattr(cfg, "shuffle"): | |
cfg.shuffle = False | |
return cls(cfg, dictionary) | |
def _load_dataset_split(self, split, epoch, combine): | |
paths = utils.split_paths(self.cfg.data) | |
assert len(paths) > 0 | |
data_path = paths[(epoch - 1) % len(paths)] | |
split_path = os.path.join(data_path, split) | |
dataset = data_utils.load_indexed_dataset( | |
split_path, | |
self.dictionary, | |
self.cfg.dataset_impl, | |
combine=combine, | |
) | |
if dataset is None: | |
raise FileNotFoundError( | |
"Dataset not found: {} ({})".format(split, split_path) | |
) | |
dataset = StripTokenDataset(dataset, self.dictionary.eos()) | |
dataset = maybe_shorten_dataset( | |
dataset, | |
split, | |
self.cfg.shorten_data_split_list, | |
self.cfg.shorten_method, | |
self.cfg.tokens_per_sample, | |
self.cfg.seed, | |
) | |
# create continuous blocks of tokens | |
dataset = TokenBlockDataset( | |
dataset, | |
dataset.sizes, | |
self.cfg.tokens_per_sample - 2, # one less for <s> and one for </s> | |
pad=self.dictionary.pad(), | |
eos=self.dictionary.eos(), | |
break_mode=self.cfg.sample_break_mode, | |
document_sep_len=0, | |
) | |
logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) | |
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) | |
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) | |
dataset = AppendTokenDataset(dataset, self.source_dictionary.eos()) | |
return dataset | |
def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
"""Load a given dataset split. | |
Args: | |
split (str): name of the split (e.g., train, valid, test) | |
""" | |
dataset = self._load_dataset_split(split, epoch, combine) | |
self.datasets[split] = SpanMaskedTokensDataset( | |
dataset, | |
self.dictionary, | |
noise_density=self.cfg.noise_density, | |
mean_noise_span_length=self.cfg.mean_noise_span_length, | |
shuffle=self.cfg.shuffle, | |
seed=self.cfg.seed, | |
) | |
logger.info( | |
"Split: {0}, Loaded {1} samples of span_masked_tokens_dataset".format( | |
split, | |
len(self.datasets[split]), | |
) | |
) | |
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): | |
""" | |
Generate batches for inference. We assume that the input begins with a | |
bos symbol (`<s>`) and ends with an eos symbol (`</s>`). | |
""" | |
pad = self.source_dictionary.pad() | |
eos = self.source_dictionary.eos() | |
src_dataset = TokenBlockDataset( | |
src_tokens, | |
src_lengths, | |
block_size=self.cfg.tokens_per_sample - 2, # for <s> and </s> | |
pad=pad, | |
eos=eos, | |
break_mode=self.cfg.sample_break_mode, | |
document_sep_len=0, | |
) | |
prev_output_tokens = PrependTokenDataset( | |
StripTokenDataset(src_dataset, eos), eos | |
) | |
src_dataset = PadDataset(src_dataset, pad_idx=pad, left_pad=False) | |
return NestedDictionaryDataset( | |
{ | |
"id": IdDataset(), | |
"net_input": { | |
"src_tokens": src_dataset, | |
"src_lengths": NumelDataset(src_dataset, reduce=False), | |
"prev_output_tokens": PadDataset( | |
prev_output_tokens, pad_idx=pad, left_pad=False | |
), | |
}, | |
"target": src_dataset, | |
}, | |
sizes=[np.array(src_lengths)], | |
) | |
def max_positions(self): | |
"""Return the max sentence length allowed by the task.""" | |
return (self.cfg.max_source_positions, self.cfg.max_target_positions) | |
def source_dictionary(self): | |
"""Return the source :class:`~fairseq.data.Dictionary`.""" | |
return self.dictionary | |
def target_dictionary(self): | |
"""Return the target :class:`~fairseq.data.Dictionary`.""" | |
return self.dictionary | |