#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import copy import logging import os from typing import Any, Dict, Iterator, List import torch from omegaconf import open_dict from torch import nn from fairseq import utils from fairseq.data import encoders logger = logging.getLogger(__name__) def from_pretrained( model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", archive_map=None, **kwargs ): from fairseq import checkpoint_utils, file_utils if archive_map is not None: if model_name_or_path in archive_map: model_name_or_path = archive_map[model_name_or_path] if data_name_or_path is not None and data_name_or_path in archive_map: data_name_or_path = archive_map[data_name_or_path] # allow archive_map to set default arg_overrides (e.g., tokenizer, bpe) # for each model if isinstance(model_name_or_path, dict): for k, v in model_name_or_path.items(): if k == "checkpoint_file": checkpoint_file = v elif ( k != "path" # only set kwargs that don't already have overrides and k not in kwargs ): kwargs[k] = v model_name_or_path = model_name_or_path["path"] model_path = file_utils.load_archive_file(model_name_or_path) # convenience hack for loading data and BPE codes from model archive if data_name_or_path.startswith("."): kwargs["data"] = os.path.abspath(os.path.join(model_path, data_name_or_path)) else: kwargs["data"] = file_utils.load_archive_file(data_name_or_path) for file, arg in { "code": "bpe_codes", "bpecodes": "bpe_codes", "sentencepiece.bpe.model": "sentencepiece_model", "merges.txt": "bpe_merges", "vocab.json": "bpe_vocab", }.items(): path = os.path.join(model_path, file) if os.path.exists(path): kwargs[arg] = path if "user_dir" in kwargs: utils.import_user_module(argparse.Namespace(user_dir=kwargs["user_dir"])) model_path = [ os.path.join(model_path, cpt) for cpt in checkpoint_file.split(os.pathsep) ] if "is_vocoder" in kwargs: args = {"data": kwargs["data"], "model_path": model_path} task = None models = None else: models, args, task = checkpoint_utils.load_model_ensemble_and_task( model_path, arg_overrides=kwargs, ) if "generation_args" in kwargs and kwargs["generation_args"]: for key in kwargs["generation_args"]: setattr(args["generation"], key, kwargs["generation_args"][key]) return { "args": args, "task": task, "models": models, } class GeneratorHubInterface(nn.Module): """ PyTorch Hub interface for generating sequences from a pre-trained translation or language model. """ def __init__(self, cfg, task, models): super().__init__() self.cfg = cfg self.task = task self.models = nn.ModuleList(models) self.src_dict = task.source_dictionary self.tgt_dict = task.target_dictionary # optimize model for generation for model in self.models: model.prepare_for_inference_(cfg) # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) self.align_dict = utils.load_align_dict(cfg.generation.replace_unk) self.tokenizer = encoders.build_tokenizer(cfg.tokenizer) self.bpe = encoders.build_bpe(cfg.bpe) self.max_positions = utils.resolve_max_positions( self.task.max_positions(), *[model.max_positions() for model in models] ) # this is useful for determining the device self.register_buffer("_float_tensor", torch.tensor([0], dtype=torch.float)) @property def device(self): return self._float_tensor.device def translate( self, sentences: List[str], beam: int = 5, verbose: bool = False, **kwargs ) -> List[str]: return self.sample(sentences, beam, verbose, **kwargs) def sample( self, sentences: List[str], beam: int = 1, verbose: bool = False, **kwargs ) -> List[str]: if isinstance(sentences, str): return self.sample([sentences], beam=beam, verbose=verbose, **kwargs)[0] tokenized_sentences = [self.encode(sentence) for sentence in sentences] batched_hypos = self.generate(tokenized_sentences, beam, verbose, **kwargs) return [self.decode(hypos[0]["tokens"]) for hypos in batched_hypos] def score( self, sentences: List[str], replace_newline_with_eos: bool = False, **kwargs ): if isinstance(sentences, str): return self.score( [sentences], replace_newline_with_eos=replace_newline_with_eos, **kwargs )[0] def encode(sentence): if replace_newline_with_eos: return torch.cat([self.encode(line) for line in sentence.splitlines()]) else: return self.encode(sentence) # NOTE: this doesn't support translation tasks currently tokenized_sentences = [encode(sentence) for sentence in sentences] return [ hypos[0] for hypos in self.generate( tokenized_sentences, score_reference=True, **kwargs ) ] def generate( self, tokenized_sentences: List[torch.LongTensor], beam: int = 5, verbose: bool = False, skip_invalid_size_inputs=False, inference_step_args=None, prefix_allowed_tokens_fn=None, **kwargs ) -> List[List[Dict[str, torch.Tensor]]]: if torch.is_tensor(tokenized_sentences) and tokenized_sentences.dim() == 1: return self.generate( tokenized_sentences.unsqueeze(0), beam=beam, verbose=verbose, **kwargs )[0] # build generator using current args as well as any kwargs gen_args = copy.deepcopy(self.cfg.generation) with open_dict(gen_args): gen_args.beam = beam for k, v in kwargs.items(): setattr(gen_args, k, v) generator = self.task.build_generator( self.models, gen_args, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, ) inference_step_args = inference_step_args or {} results = [] for batch in self._build_batches(tokenized_sentences, skip_invalid_size_inputs): batch = utils.apply_to_sample(lambda t: t.to(self.device), batch) translations = self.task.inference_step( generator, self.models, batch, **inference_step_args ) for id, hypos in zip(batch["id"].tolist(), translations): results.append((id, hypos)) # sort output to match input order outputs = [hypos for _, hypos in sorted(results, key=lambda x: x[0])] if verbose: def getarg(name, default): return getattr(gen_args, name, getattr(self.cfg, name, default)) for source_tokens, target_hypotheses in zip(tokenized_sentences, outputs): src_str_with_unk = self.string(source_tokens) logger.info("S\t{}".format(src_str_with_unk)) for hypo in target_hypotheses: hypo_str = self.decode(hypo["tokens"]) logger.info("H\t{}\t{}".format(hypo["score"], hypo_str)) logger.info( "P\t{}".format( " ".join( map( lambda x: "{:.4f}".format(x), hypo["positional_scores"].tolist(), ) ) ) ) if hypo["alignment"] is not None and getarg( "print_alignment", False ): logger.info( "A\t{}".format( " ".join( [ "{}-{}".format(src_idx, tgt_idx) for src_idx, tgt_idx in hypo["alignment"] ] ) ) ) return outputs def encode(self, sentence: str) -> torch.LongTensor: sentence = self.tokenize(sentence) sentence = self.apply_bpe(sentence) return self.binarize(sentence) def decode(self, tokens: torch.LongTensor) -> str: sentence = self.string(tokens) sentence = self.remove_bpe(sentence) return self.detokenize(sentence) def tokenize(self, sentence: str) -> str: if self.tokenizer is not None: sentence = self.tokenizer.encode(sentence) return sentence def detokenize(self, sentence: str) -> str: if self.tokenizer is not None: sentence = self.tokenizer.decode(sentence) return sentence def apply_bpe(self, sentence: str) -> str: if self.bpe is not None: sentence = self.bpe.encode(sentence) return sentence def remove_bpe(self, sentence: str) -> str: if self.bpe is not None: sentence = self.bpe.decode(sentence) return sentence def binarize(self, sentence: str) -> torch.LongTensor: return self.src_dict.encode_line(sentence, add_if_not_exist=False).long() def string(self, tokens: torch.LongTensor) -> str: return self.tgt_dict.string(tokens) def _build_batches( self, tokens: List[List[int]], skip_invalid_size_inputs: bool ) -> Iterator[Dict[str, Any]]: lengths = torch.LongTensor([t.numel() for t in tokens]) batch_iterator = self.task.get_batch_iterator( dataset=self.task.build_dataset_for_inference(tokens, lengths), max_tokens=self.cfg.dataset.max_tokens, max_sentences=self.cfg.dataset.batch_size, max_positions=self.max_positions, ignore_invalid_inputs=skip_invalid_size_inputs, disable_iterator_cache=True, ).next_epoch_itr(shuffle=False) return batch_iterator class BPEHubInterface(object): """PyTorch Hub interface for Byte-Pair Encoding (BPE).""" def __init__(self, bpe, **kwargs): super().__init__() args = argparse.Namespace(bpe=bpe, **kwargs) self.bpe = encoders.build_bpe(args) assert self.bpe is not None def encode(self, sentence: str) -> str: return self.bpe.encode(sentence) def decode(self, sentence: str) -> str: return self.bpe.decode(sentence) class TokenizerHubInterface(object): """PyTorch Hub interface for tokenization.""" def __init__(self, tokenizer, **kwargs): super().__init__() args = argparse.Namespace(tokenizer=tokenizer, **kwargs) self.tokenizer = encoders.build_tokenizer(args) assert self.tokenizer is not None def encode(self, sentence: str) -> str: return self.tokenizer.encode(sentence) def decode(self, sentence: str) -> str: return self.tokenizer.decode(sentence)