# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import signal import threading import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel from fairseq.distributed import ( DistributedTimeoutWrapper, LegacyDistributedDataParallel, ModuleProxyWrapper, TPUDistributedDataParallel, ) logger = logging.getLogger(__name__) _SLOWMO_DDP_DISABLED = False try: from fairscale.experimental.nn.data_parallel import ( SlowMoBaseAlgorithm, SlowMoDistributedDataParallel, ) except ImportError: _SLOWMO_DDP_DISABLED = True def DistributedFairseqModel(args, model, process_group, device): """ Wrap a *model* to support distributed data parallel training. This is similar to the built-in DistributedDataParallel, but allows additional configuration of the DistributedDataParallel class to use, and also provides easier access to the wrapped model by forwarding requests for missing attributes to the wrapped model. Args: args (argparse.Namespace): fairseq args model (BaseFairseqModel): model to wrap process_group: the c10d process group to be used for distributed data parallel all-reduction. device: device to move model to """ assert isinstance(model, nn.Module) if args.tpu: wrapped_model = TPUDistributedDataParallel( module=model.to(device), process_group=process_group, ) # forward missing getattr and state_dict/load_state_dict to orig model wrapped_model = ModuleProxyWrapper(wrapped_model) elif args.ddp_backend in {"c10d", "pytorch_ddp"}: wrapped_model = DistributedDataParallel( module=model.to(device), device_ids=[args.device_id], output_device=args.device_id, broadcast_buffers=args.broadcast_buffers, bucket_cap_mb=args.bucket_cap_mb, process_group=process_group, find_unused_parameters=args.find_unused_parameters, gradient_as_bucket_view=args.gradient_as_bucket_view, ) if args.ddp_comm_hook == "fp16": logger.info("enable fp16 communication hook in DDP") try: from torch.distributed.algorithms.ddp_comm_hooks import ( DDPCommHookType, register_ddp_comm_hook, ) except: logger.error( "Could not import from torch.distributed.algorithms.ddp_comm_hooks; you may need to update your pytorch version" ) raise register_ddp_comm_hook(DDPCommHookType.FP16_COMPRESS, wrapped_model) # forward missing getattr and state_dict/load_state_dict to orig model wrapped_model = ModuleProxyWrapper(wrapped_model) elif args.ddp_backend in {"no_c10d", "legacy_ddp"}: wrapped_model = LegacyDistributedDataParallel( module=model.to(device), buffer_size=2**28, process_group=process_group, ) # forward missing getattr and state_dict/load_state_dict to orig model wrapped_model = ModuleProxyWrapper(wrapped_model) elif args.ddp_backend == "slowmo": if _SLOWMO_DDP_DISABLED: raise ImportError( "Cannot find SlowMoDistributedDataParallel. " "Please install fairscale with: pip install fairscale" ) # The values of slowmo_momentum below were obtained by tuning on the # En-De 16 dataset by training the transformer_wmt_en_de_large model if args.slowmo_momentum is None: if args.distributed_world_size <= 16: args.slowmo_momentum = 0.0 elif args.distributed_world_size <= 32: args.slowmo_momentum = 0.2 elif args.distributed_world_size <= 64: args.slowmo_momentum = 0.5 else: args.slowmo_momentum = 0.6 slowmo_base_algorithm = SlowMoBaseAlgorithm[args.slowmo_base_algorithm.upper()] wrapped_model = SlowMoDistributedDataParallel( module=model.to(device), broadcast_buffers=args.broadcast_buffers, nprocs_per_node=args.nprocs_per_node, slowmo_momentum=args.slowmo_momentum, slowmo_base_algorithm=slowmo_base_algorithm, localsgd_frequency=args.localsgd_frequency, ) # forward missing getattr and state_dict/load_state_dict to orig model wrapped_model = ModuleProxyWrapper(wrapped_model) elif args.ddp_backend == "fully_sharded": try: from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP except ImportError: raise ImportError( "Cannot find FullyShardedDataParallel. " "Please install fairscale with: pip install fairscale" ) assert isinstance(model, FSDP), "expected model to already be wrapped in FSDP" wrapped_model = model if args.memory_efficient_fp16: wrapped_model = wrapped_model.half() if not args.cpu_offload: wrapped_model = wrapped_model.to(device=device) else: raise ValueError("Unknown --ddp-backend: " + args.ddp_backend) # kill hung distributed jobs after a timeout if getattr(args, "heartbeat_timeout", -1) > 0: wrapped_model = DistributedTimeoutWrapper( wrapped_model, timeout=getattr(args, "heartbeat_timeout", -1) ) return wrapped_model