# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import copy import logging import math from argparse import Namespace from dataclasses import dataclass, field from typing import Any, Optional import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from omegaconf import II, MISSING, open_dict from fairseq import checkpoint_utils, tasks, utils from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.models import ( BaseFairseqModel, FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, ) from fairseq.models.hubert.hubert import MASKING_DISTRIBUTION_CHOICES from fairseq.modules import LayerNorm, PositionalEmbedding, TransformerDecoderLayer from fairseq.tasks import FairseqTask logger = logging.getLogger(__name__) @dataclass class HubertAsrConfig(FairseqDataclass): w2v_path: str = field(default=MISSING, metadata={"help": "path to hubert model"}) no_pretrained_weights: bool = field( default=False, metadata={"help": "if true, does not load pretrained weights"}, ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) final_dropout: float = field( default=0.0, metadata={"help": "dropout after transformer and before final projection"}, ) dropout: float = field( default=0.0, metadata={"help": "dropout probability inside hubert model"}, ) attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights " "inside hubert model" }, ) activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN " "inside hubert model" }, ) encoder_embed_dim: Optional[int] = field( default=768, metadata={"help": "encoder embedding dimension"} ) # masking apply_mask: bool = field( default=False, metadata={"help": "apply masking during fine-tuning"} ) mask_length: int = field( default=10, metadata={"help": "repeat the mask indices multiple times"} ) mask_prob: float = field( default=0.5, metadata={ "help": "probability of replacing a token with mask " "(normalized by length)" }, ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose masks"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"}, ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"}, ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"}, ) freeze_finetune_updates: int = field( default=0, metadata={"help": "dont finetune hubert for this many updates"}, ) feature_grad_mult: float = field( default=0.0, metadata={"help": "reset feature grad mult in hubert to this"}, ) layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a layer in hubert"}, ) normalize: bool = II("task.normalize") data: str = II("task.data") # this holds the loaded hubert args w2v_args: Any = None @dataclass class HubertCtcConfig(HubertAsrConfig): pass @register_model("hubert_ctc", dataclass=HubertCtcConfig) class HubertCtc(BaseFairseqModel): def __init__(self, cfg: HubertCtcConfig, w2v_encoder: BaseFairseqModel): super().__init__() self.cfg = cfg self.w2v_encoder = w2v_encoder def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: HubertCtcConfig, task: FairseqTask): """Build a new model instance.""" w2v_encoder = HubertEncoder(cfg, task) return cls(cfg, w2v_encoder) def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output["encoder_out"] if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) def get_logits(self, net_output): logits = net_output["encoder_out"] padding = net_output["encoder_padding_mask"] if padding is not None and padding.any(): padding = padding.T logits[padding][..., 0] = 0 logits[padding][..., 1:] = float("-inf") return logits def forward(self, **kwargs): x = self.w2v_encoder(**kwargs) return x @dataclass class HubertSeq2SeqConfig(HubertAsrConfig): decoder_embed_dim: int = field( default=768, metadata={"help": "decoder embedding dimension"} ) decoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num of decoder layers"}) decoder_layerdrop: float = field( default=0.0, metadata={"help": "decoder layerdrop chance"} ) decoder_attention_heads: int = field( default=4, metadata={"help": "num decoder attention heads"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) decoder_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the decoder"} ) decoder_attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights inside the decoder" }, ) decoder_activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN inside the decoder" }, ) max_target_positions: int = field( default=2048, metadata={"help": "max target positions"} ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) autoregressive: bool = II("task.autoregressive") seq2seq_path: str = field( default="", metadata={"help": "reset_dict"}, ) reset_dict: bool = field( default=False, metadata={"help": "reset_dict"}, ) @register_model("hubert_seq2seq", dataclass=HubertSeq2SeqConfig) class HubertSeq2SeqModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, cfg: HubertSeq2SeqConfig, task: FairseqTask): """Build a new model instance.""" assert ( cfg.autoregressive ), "Please set task.autoregressive=true for seq2seq asr models" src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) return emb decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim) encoder = cls.build_encoder(cfg, task) decoder = cls.build_decoder(cfg, tgt_dict, decoder_embed_tokens) model = HubertSeq2SeqModel(encoder, decoder) if cfg["seq2seq_path"]: state = checkpoint_utils.load_checkpoint_to_cpu(cfg.seq2seq_path) state = state["model"] if cfg["reset_dict"]: del state["decoder.embed_out"] del state["decoder.embed_tokens.weight"] model.load_state_dict(state, strict=False) return model @classmethod def build_encoder(cls, cfg: HubertAsrConfig, task): return HubertEncoder(cfg, task) @classmethod def build_decoder(cls, cfg: HubertSeq2SeqConfig, tgt_dict, embed_tokens): return TransformerDecoder(cfg, tgt_dict, embed_tokens) def forward(self, **kwargs): encoder_out = self.encoder(**kwargs) decoder_out = self.decoder(encoder_out=encoder_out, **kwargs) return decoder_out def upgrade_state_dict_named(self, state_dict, name): return state_dict def load_state_dict( self, state_dict, strict=True, model_cfg=None, args: Optional[Namespace] = None, ): if model_cfg.reset_dict: logger.warn("Overriding loading strict state dict!") del state_dict["decoder.embed_out"] del state_dict["decoder.embed_tokens.weight"] return super().load_state_dict(state_dict, False, model_cfg, args) return super().load_state_dict(state_dict, strict, model_cfg, args) class HubertEncoder(FairseqEncoder): def __init__(self, cfg: HubertAsrConfig, task): self.apply_mask = cfg.apply_mask arg_overrides = { "dropout": cfg.dropout, "activation_dropout": cfg.activation_dropout, "dropout_input": cfg.dropout_input, "attention_dropout": cfg.attention_dropout, "mask_length": cfg.mask_length, "mask_prob": cfg.mask_prob, "mask_selection": cfg.mask_selection, "mask_other": cfg.mask_other, "no_mask_overlap": cfg.no_mask_overlap, "mask_channel_length": cfg.mask_channel_length, "mask_channel_prob": cfg.mask_channel_prob, "mask_channel_selection": cfg.mask_channel_selection, "mask_channel_other": cfg.mask_channel_other, "no_mask_channel_overlap": cfg.no_mask_channel_overlap, "encoder_layerdrop": cfg.layerdrop, "feature_grad_mult": cfg.feature_grad_mult, } if cfg.w2v_args is None: state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides) w2v_args = state.get("cfg", None) if w2v_args is None: w2v_args = convert_namespace_to_omegaconf(state["args"]) cfg.w2v_args = w2v_args else: state = None w2v_args = cfg.w2v_args if isinstance(w2v_args, Namespace): cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args) assert cfg.normalize == w2v_args.task.normalize, ( "Fine-tuning works best when data normalization is the same. " "Please check that --normalize is set or unset for " "both pre-training and here" ) w2v_args.task.data = cfg.data pretrain_task = tasks.setup_task(w2v_args.task) if state is not None and "task_state" in state: # This will load the stored "dictionaries" object pretrain_task.load_state_dict(state["task_state"]) else: pretrain_task.load_state_dict(task.state_dict()) model = pretrain_task.build_model(w2v_args.model, from_checkpoint=True) if state is not None and not cfg.no_pretrained_weights: # set strict=False because we omit some modules model.load_state_dict(state["model"], strict=False) model.remove_pretraining_modules() super().__init__(pretrain_task.source_dictionary) d = w2v_args.model.encoder_embed_dim self.w2v_model = model self.final_dropout = nn.Dropout(cfg.final_dropout) self.freeze_finetune_updates = cfg.freeze_finetune_updates self.num_updates = 0 if task.target_dictionary is not None and not cfg.autoregressive: self.proj = Linear(d, len(task.target_dictionary)) elif getattr(cfg, "decoder_embed_dim", d) != d: self.proj = Linear(d, cfg.decoder_embed_dim) else: self.proj = None def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates def forward(self, source, padding_mask, tbc=True, **kwargs): w2v_args = { "source": source, "padding_mask": padding_mask, "mask": self.apply_mask and self.training, } ft = self.freeze_finetune_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): x, padding_mask = self.w2v_model.extract_features(**w2v_args) if tbc: # B x T x C -> T x B x C x = x.transpose(0, 1) x = self.final_dropout(x) if self.proj: x = self.proj(x) return { "encoder_out": x, # T x B x C "encoder_padding_mask": padding_mask, # B x T "padding_mask": padding_mask, } def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) if encoder_out["padding_mask"] is not None: encoder_out["padding_mask"] = encoder_out["padding_mask"].index_select( 0, new_order ) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return None def upgrade_state_dict_named(self, state_dict, name): return state_dict class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, cfg: HubertSeq2SeqConfig, dictionary, embed_tokens, no_encoder_attn=False, ): super().__init__(dictionary) self.dropout = cfg.decoder_dropout self.share_input_output_embed = cfg.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = cfg.decoder_embed_dim self.output_embed_dim = cfg.decoder_embed_dim self.layerdrop = cfg.decoder_layerdrop self.padding_idx = embed_tokens.padding_idx self.max_target_positions = cfg.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( cfg.max_target_positions, embed_dim, self.padding_idx, learned=cfg.decoder_learned_pos, ) if not cfg.no_token_positional_embeddings else None ) # TODO: update this when transformer gets converted to dataclass configs transformer_cfg = copy.deepcopy(cfg) with open_dict(transformer_cfg): transformer_cfg.dropout = transformer_cfg.decoder_dropout transformer_cfg.attention_dropout = ( transformer_cfg.decoder_attention_dropout ) transformer_cfg.activation_dropout = ( transformer_cfg.decoder_activation_dropout ) self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerDecoderLayer(transformer_cfg, no_encoder_attn) for _ in range(transformer_cfg.decoder_layers) ] ) if not self.share_input_output_embed: self.embed_out = nn.Parameter( torch.Tensor(len(dictionary), self.output_embed_dim) ) nn.init.normal_(self.embed_out, mean=0, std=self.output_embed_dim**-0.5) if transformer_cfg.decoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ if type(prev_output_tokens) == list: max_len = max((len(x) for x in prev_output_tokens)) tmp = torch.zeros( [len(prev_output_tokens), max_len], device=prev_output_tokens[0].device ) for (i, p) in enumerate(prev_output_tokens): tmp[i, : len(p)] = p prev_output_tokens = tmp prev_output_tokens = prev_output_tokens.long() x, extra = self.extract_features( prev_output_tokens, encoder_out, incremental_state ) x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers self_attn_padding_mask = None if prev_output_tokens.eq(self.padding_idx).any(): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) for layer in self.layers: dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, attn, _ = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["padding_mask"] if encoder_out is not None else None, incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, self_attn_padding_mask=self_attn_padding_mask, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) return x, {"attn": attn, "inner_states": inner_states} def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" # project back to size of vocabulary if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m