# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from fairseq.data.audio.speech_to_text_dataset import S2TDataConfig class SpeechGenerator(object): def __init__(self, model, vocoder, data_cfg: S2TDataConfig): self.model = model self.vocoder = vocoder stats_npz_path = data_cfg.global_cmvn_stats_npz self.gcmvn_stats = None if stats_npz_path is not None: self.gcmvn_stats = np.load(stats_npz_path) def gcmvn_denormalize(self, x): # x: B x T x C if self.gcmvn_stats is None: return x mean = torch.from_numpy(self.gcmvn_stats["mean"]).to(x) std = torch.from_numpy(self.gcmvn_stats["std"]).to(x) assert len(x.shape) == 3 and mean.shape[0] == std.shape[0] == x.shape[2] x = x * std.view(1, 1, -1).expand_as(x) return x + mean.view(1, 1, -1).expand_as(x) def get_waveform(self, feat): # T x C -> T return None if self.vocoder is None else self.vocoder(feat).squeeze(0) class AutoRegressiveSpeechGenerator(SpeechGenerator): def __init__( self, model, vocoder, data_cfg, max_iter: int = 6000, eos_prob_threshold: float = 0.5, ): super().__init__(model, vocoder, data_cfg) self.max_iter = max_iter self.eos_prob_threshold = eos_prob_threshold @torch.no_grad() def generate(self, model, sample, has_targ=False, **kwargs): model.eval() src_tokens = sample["net_input"]["src_tokens"] src_lengths = sample["net_input"]["src_lengths"] bsz, src_len = src_tokens.size()[:2] n_frames_per_step = model.decoder.n_frames_per_step out_dim = model.decoder.out_dim raw_dim = out_dim // n_frames_per_step # initialize encoder_out = model.forward_encoder( src_tokens, src_lengths, speaker=sample["speaker"] ) incremental_state = {} feat, attn, eos_prob = [], [], [] finished = src_tokens.new_zeros((bsz,)).bool() out_lens = src_lengths.new_zeros((bsz,)).long().fill_(self.max_iter) prev_feat_out = encoder_out["encoder_out"][0].new_zeros(bsz, 1, out_dim) for step in range(self.max_iter): cur_out_lens = out_lens.clone() cur_out_lens.masked_fill_(cur_out_lens.eq(self.max_iter), step + 1) _, cur_eos_out, cur_extra = model.forward_decoder( prev_feat_out, encoder_out=encoder_out, incremental_state=incremental_state, target_lengths=cur_out_lens, speaker=sample["speaker"], **kwargs, ) cur_eos_prob = torch.sigmoid(cur_eos_out).squeeze(2) feat.append(cur_extra["feature_out"]) attn.append(cur_extra["attn"]) eos_prob.append(cur_eos_prob) cur_finished = cur_eos_prob.squeeze(1) > self.eos_prob_threshold out_lens.masked_fill_((~finished) & cur_finished, step + 1) finished = finished | cur_finished if finished.sum().item() == bsz: break prev_feat_out = cur_extra["feature_out"] feat = torch.cat(feat, dim=1) feat = model.decoder.postnet(feat) + feat eos_prob = torch.cat(eos_prob, dim=1) attn = torch.cat(attn, dim=2) alignment = attn.max(dim=1)[1] feat = feat.reshape(bsz, -1, raw_dim) feat = self.gcmvn_denormalize(feat) eos_prob = eos_prob.repeat_interleave(n_frames_per_step, dim=1) attn = attn.repeat_interleave(n_frames_per_step, dim=2) alignment = alignment.repeat_interleave(n_frames_per_step, dim=1) out_lens = out_lens * n_frames_per_step finalized = [ { "feature": feat[b, :out_len], "eos_prob": eos_prob[b, :out_len], "attn": attn[b, :, :out_len], "alignment": alignment[b, :out_len], "waveform": self.get_waveform(feat[b, :out_len]), } for b, out_len in zip(range(bsz), out_lens) ] if has_targ: assert sample["target"].size(-1) == out_dim tgt_feats = sample["target"].view(bsz, -1, raw_dim) tgt_feats = self.gcmvn_denormalize(tgt_feats) tgt_lens = sample["target_lengths"] * n_frames_per_step for b, (f, l) in enumerate(zip(tgt_feats, tgt_lens)): finalized[b]["targ_feature"] = f[:l] finalized[b]["targ_waveform"] = self.get_waveform(f[:l]) return finalized class MultiDecoderSpeechGenerator(SpeechGenerator): def __init__( self, models, args, vocoder, data_cfg, tgt_dict_mt, max_iter: int = 6000, eos_prob_threshold: float = 0.5, eos_mt=None, symbols_to_strip_from_output=None, ): super().__init__(models[0], vocoder, data_cfg) self.max_iter = max_iter self.eos_prob_threshold = eos_prob_threshold self.tgt_dict_mt = tgt_dict_mt self.eos_mt = eos_mt from examples.speech_to_speech.unity.sequence_generator import SequenceGenerator from fairseq import search self.text_generator = SequenceGenerator( models, tgt_dict_mt, beam_size=max(1, getattr(args, "beam", 5)), max_len_a=getattr(args, "max_len_a", 0), max_len_b=getattr(args, "max_len_b", 200), min_len=getattr(args, "min_len", 1), normalize_scores=(not getattr(args, "unnormalized", False)), len_penalty=getattr(args, "lenpen", 1), unk_penalty=getattr(args, "unkpen", 0), temperature=getattr(args, "temperature", 1.0), match_source_len=getattr(args, "match_source_len", False), no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0), search_strategy=search.BeamSearch(tgt_dict_mt), eos=eos_mt, symbols_to_strip_from_output=symbols_to_strip_from_output, ) @torch.no_grad() def generate(self, model, sample, has_targ=False, **kwargs): model.eval() src_tokens = sample["net_input"]["src_tokens"] src_lengths = sample["net_input"]["src_lengths"] bsz, src_len = src_tokens.size()[:2] n_frames_per_step = model.decoder.n_frames_per_step out_dim = model.decoder.out_dim raw_dim = out_dim // n_frames_per_step # initialize encoder_out = model.forward_encoder( src_tokens, src_lengths, speaker=sample["speaker"] ) prefix_tokens = None constraints = None bos_token = None mt_decoder = getattr(model, f"{model.mt_task_name}_decoder") # 1. MT decoder finalized_mt = self.text_generator.generate_decoder( [encoder_out], src_tokens, src_lengths, sample, prefix_tokens, constraints, bos_token, aux_task_name=model.mt_task_name, ) # extract decoder output corresponding to the best hypothesis max_tgt_len = max([len(hypo[0]["tokens"]) for hypo in finalized_mt]) prev_output_tokens_mt = ( src_tokens.new_zeros(src_tokens.shape[0], max_tgt_len) .fill_(mt_decoder.padding_idx) .int() ) # B x T for i, hypo in enumerate(finalized_mt): i_beam = 0 tmp = hypo[i_beam]["tokens"].int() # hyp + eos prev_output_tokens_mt[i, 0] = self.text_generator.eos if tmp[-1] == self.text_generator.eos: tmp = tmp[:-1] prev_output_tokens_mt[i, 1 : len(tmp) + 1] = tmp text = "".join([self.tgt_dict_mt[c] for c in tmp]) text = text.replace("_", " ") text = text.replace("▁", " ") text = text.replace("", " ") text = text.replace("", "") text = text.replace("", "") if len(text) > 0 and text[0] == " ": text = text[1:] sample_id = sample["id"].tolist()[i] print("{} (None-{})".format(text, sample_id)) mt_decoder_out = mt_decoder( prev_output_tokens_mt, encoder_out=encoder_out, features_only=True, ) x = mt_decoder_out[0].transpose(0, 1) mt_decoder_padding_mask = None if prev_output_tokens_mt.eq(mt_decoder.padding_idx).any(): mt_decoder_padding_mask = prev_output_tokens_mt.eq(mt_decoder.padding_idx) # 2. TTS encoder if getattr(model, "synthesizer_encoder", None) is not None: synthesizer_encoder_out = model.synthesizer_encoder( x, mt_decoder_padding_mask, ) else: synthesizer_encoder_out = { "encoder_out": [x], # T x B x C "encoder_padding_mask": [mt_decoder_padding_mask] if mt_decoder_padding_mask is not None else [], # B x T "encoder_embedding": [], "encoder_states": [], "src_tokens": [], "src_lengths": [], } # 3. TTS decoder incremental_state = {} feat, attn, eos_prob = [], [], [] finished = src_tokens.new_zeros((bsz,)).bool() out_lens = src_lengths.new_zeros((bsz,)).long().fill_(self.max_iter) prev_feat_out = encoder_out["encoder_out"][0].new_zeros(bsz, 1, out_dim) for step in range(self.max_iter): cur_out_lens = out_lens.clone() cur_out_lens.masked_fill_(cur_out_lens.eq(self.max_iter), step + 1) _, cur_eos_out, cur_extra = model.forward_decoder( prev_feat_out, encoder_out=synthesizer_encoder_out, incremental_state=incremental_state, target_lengths=cur_out_lens, speaker=sample["speaker"], **kwargs, ) cur_eos_prob = torch.sigmoid(cur_eos_out).squeeze(2) feat.append(cur_extra["feature_out"]) attn.append(cur_extra["attn"]) eos_prob.append(cur_eos_prob) cur_finished = cur_eos_prob.squeeze(1) > self.eos_prob_threshold out_lens.masked_fill_((~finished) & cur_finished, step + 1) finished = finished | cur_finished if finished.sum().item() == bsz: break prev_feat_out = cur_extra["feature_out"] feat = torch.cat(feat, dim=1) feat = model.decoder.postnet(feat) + feat eos_prob = torch.cat(eos_prob, dim=1) attn = torch.cat(attn, dim=2) alignment = attn.max(dim=1)[1] feat = feat.reshape(bsz, -1, raw_dim) feat = self.gcmvn_denormalize(feat) eos_prob = eos_prob.repeat_interleave(n_frames_per_step, dim=1) attn = attn.repeat_interleave(n_frames_per_step, dim=2) alignment = alignment.repeat_interleave(n_frames_per_step, dim=1) out_lens = out_lens * n_frames_per_step finalized = [ { "feature": feat[b, :out_len], "eos_prob": eos_prob[b, :out_len], "attn": attn[b, :, :out_len], "alignment": alignment[b, :out_len], "waveform": self.get_waveform(feat[b, :out_len]), } for b, out_len in zip(range(bsz), out_lens) ] if has_targ: assert sample["target"].size(-1) == out_dim tgt_feats = sample["target"].view(bsz, -1, raw_dim) tgt_feats = self.gcmvn_denormalize(tgt_feats) tgt_lens = sample["target_lengths"] * n_frames_per_step for b, (f, l) in enumerate(zip(tgt_feats, tgt_lens)): finalized[b]["targ_feature"] = f[:l] finalized[b]["targ_waveform"] = self.get_waveform(f[:l]) return finalized class NonAutoregressiveSpeechGenerator(SpeechGenerator): @torch.no_grad() def generate(self, model, sample, has_targ=False, **kwargs): model.eval() bsz, max_src_len = sample["net_input"]["src_tokens"].size() n_frames_per_step = model.encoder.n_frames_per_step out_dim = model.encoder.out_dim raw_dim = out_dim // n_frames_per_step feat, feat_post, out_lens, log_dur_out, _, _ = model( src_tokens=sample["net_input"]["src_tokens"], src_lengths=sample["net_input"]["src_lengths"], prev_output_tokens=sample["net_input"]["prev_output_tokens"], incremental_state=None, target_lengths=sample["target_lengths"], speaker=sample["speaker"], ) if feat_post is not None: feat = feat_post feat = feat.view(bsz, -1, raw_dim) feat = self.gcmvn_denormalize(feat) dur_out = torch.clamp(torch.round(torch.exp(log_dur_out) - 1).long(), min=0) def get_dur_plot_data(d): r = [] for i, dd in enumerate(d): r += [i + 1] * dd.item() return r out_lens = out_lens * n_frames_per_step finalized = [ { "feature": feat[b, :l] if l > 0 else feat.new_zeros([1, raw_dim]), "waveform": self.get_waveform( feat[b, :l] if l > 0 else feat.new_zeros([1, raw_dim]) ), "attn": feat.new_tensor(get_dur_plot_data(dur_out[b])), } for b, l in zip(range(bsz), out_lens) ] if has_targ: tgt_feats = sample["target"].view(bsz, -1, raw_dim) tgt_feats = self.gcmvn_denormalize(tgt_feats) tgt_lens = sample["target_lengths"] * n_frames_per_step for b, (f, l) in enumerate(zip(tgt_feats, tgt_lens)): finalized[b]["targ_feature"] = f[:l] finalized[b]["targ_waveform"] = self.get_waveform(f[:l]) return finalized class TeacherForcingAutoRegressiveSpeechGenerator(AutoRegressiveSpeechGenerator): @torch.no_grad() def generate(self, model, sample, has_targ=False, **kwargs): model.eval() src_tokens = sample["net_input"]["src_tokens"] src_lens = sample["net_input"]["src_lengths"] prev_out_tokens = sample["net_input"]["prev_output_tokens"] tgt_lens = sample["target_lengths"] n_frames_per_step = model.decoder.n_frames_per_step raw_dim = model.decoder.out_dim // n_frames_per_step bsz = src_tokens.shape[0] feat, eos_prob, extra = model( src_tokens, src_lens, prev_out_tokens, incremental_state=None, target_lengths=tgt_lens, speaker=sample["speaker"], ) attn = extra["attn"] # B x T_s x T_t alignment = attn.max(dim=1)[1] feat = feat.reshape(bsz, -1, raw_dim) feat = self.gcmvn_denormalize(feat) eos_prob = eos_prob.repeat_interleave(n_frames_per_step, dim=1) attn = attn.repeat_interleave(n_frames_per_step, dim=2) alignment = alignment.repeat_interleave(n_frames_per_step, dim=1) tgt_lens = sample["target_lengths"] * n_frames_per_step finalized = [ { "feature": feat[b, :tgt_len], "eos_prob": eos_prob[b, :tgt_len], "attn": attn[b, :, :tgt_len], "alignment": alignment[b, :tgt_len], "waveform": self.get_waveform(feat[b, :tgt_len]), } for b, tgt_len in zip(range(bsz), tgt_lens) ] if has_targ: tgt_feats = sample["target"].view(bsz, -1, raw_dim) tgt_feats = self.gcmvn_denormalize(tgt_feats) for b, (f, l) in enumerate(zip(tgt_feats, tgt_lens)): finalized[b]["targ_feature"] = f[:l] finalized[b]["targ_waveform"] = self.get_waveform(f[:l]) return finalized