# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from dataclasses import dataclass, field from typing import Optional import numpy as np from omegaconf import II from fairseq.data import ( AppendTokenDataset, ConcatDataset, DenoisingDataset, Dictionary, PrependTokenDataset, ResamplingDataset, SortDataset, TokenBlockDataset, data_utils, ) from fairseq.data.encoders.utils import get_whole_word_mask from fairseq.tasks import register_task from .denoising import DenoisingConfig, DenoisingTask logger = logging.getLogger(__name__) @dataclass class MultilingualDenoisingConfig(DenoisingConfig): multilang_sampling_alpha: float = field( default=1.0, metadata={"help": "smoothing alpha for sample ratios across multiple datasets"}, ) add_lang_token: bool = field( default=False, metadata={"help": ""}, ) langs: Optional[str] = field( default=None, metadata={"help": "language ids we are considering"}, ) no_whole_word_mask_langs: str = field( default="", metadata={ "help": "languages without spacing between words don't support whole word masking" }, ) train_subset: str = II("common.train_subset") valid_subset: str = II("common.valid_subset") @register_task("multilingual_denoising", dataclass=MultilingualDenoisingConfig) class MultilingualDenoisingTask(DenoisingTask): cfg: MultilingualDenoisingConfig @classmethod def setup_task(cls, cfg: MultilingualDenoisingConfig, **kwargs): """Setup the task.""" paths = cfg.data.split(":") assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) data_path = paths[0] if cfg.langs is None: languages = sorted( [ name for name in os.listdir(data_path) if os.path.isdir(os.path.join(data_path, name)) ] ) else: languages = cfg.langs.split(",") if cfg.add_lang_token: for lang in languages: dictionary.add_symbol("[{}]".format(lang)) logger.info("dictionary: {} types".format(len(dictionary))) if not hasattr(cfg, "shuffle_instance"): cfg.shuffle_instance = False return cls(cfg, dictionary) def __init__(self, cfg: MultilingualDenoisingConfig, dictionary): super().__init__(cfg, dictionary) self.dictionary = dictionary # add mask token self.mask_idx = self.dictionary.add_symbol("") self.cfg = cfg def _get_sample_prob(self, dataset_lens): """ Get smoothed sampling probability by languages. This helps low resource languages by upsampling them. """ prob = dataset_lens / dataset_lens.sum() smoothed_prob = prob**self.cfg.multilang_sampling_alpha smoothed_prob = smoothed_prob / smoothed_prob.sum() return smoothed_prob def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = self.cfg.data.split(":") assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) if self.cfg.langs is None: languages = sorted( [ name for name in os.listdir(data_path) if os.path.isdir(os.path.join(data_path, name)) ] ) else: languages = self.cfg.langs.split(",") for name in languages: p = os.path.join(data_path, name) assert os.path.exists(p), "data not found: {}".format(p) logger.info("Training on {0} languages: {1}".format(len(languages), languages)) logger.info( "Language to id mapping: ", {lang: id for id, lang in enumerate(languages)} ) mask_whole_words = get_whole_word_mask(self.cfg.bpe, self.dictionary) language_without_segmentations = self.cfg.no_whole_word_mask_langs.split(",") lang_datasets = [] for language in languages: split_path = os.path.join(data_path, language, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.cfg.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) end_token = ( self.source_dictionary.index("[{}]".format(language)) if self.cfg.add_lang_token else self.source_dictionary.eos() ) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.cfg.tokens_per_sample - 2, # one less for pad=self.source_dictionary.pad(), eos=end_token, break_mode=self.cfg.sample_break_mode, ) logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) # prepend beginning-of-sentence token (, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) dataset = AppendTokenDataset(dataset, end_token) lang_mask_whole_words = ( mask_whole_words if language not in language_without_segmentations else None ) lang_dataset = DenoisingDataset( dataset, dataset.sizes, self.dictionary, self.mask_idx, lang_mask_whole_words, shuffle=self.cfg.shuffle_instance, seed=self.cfg.seed, mask=self.cfg.mask, mask_random=self.cfg.mask_random, insert=self.cfg.insert, rotate=self.cfg.rotate, permute_sentences=self.cfg.permute_sentences, bpe=self.cfg.bpe, replace_length=self.cfg.replace_length, mask_length=self.cfg.mask_length, poisson_lambda=self.cfg.poisson_lambda, eos=None if not self.cfg.add_lang_token else self.source_dictionary.index("[{}]".format(language)), ) lang_datasets.append(lang_dataset) dataset_lengths = np.array( [len(d) for d in lang_datasets], dtype=float, ) logger.info( "loaded total {} blocks for all languages".format( int(dataset_lengths.sum()), ) ) if split == self.cfg.train_subset: # For train subset, additionally up or down sample languages. sample_probs = self._get_sample_prob(dataset_lengths) logger.info( "Sample probability by language: {}".format( { lang: "{0:.4f}".format(sample_probs[id]) for id, lang in enumerate(languages) } ) ) size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths logger.info( "Up/Down Sampling ratio by language: {}".format( { lang: "{0:.2f}".format(size_ratio[id]) for id, lang in enumerate(languages) } ) ) resampled_lang_datasets = [ ResamplingDataset( lang_datasets[i], size_ratio=size_ratio[i], seed=self.cfg.seed, epoch=epoch, replace=size_ratio[i] >= 1.0, ) for i, d in enumerate(lang_datasets) ] dataset = ConcatDataset( resampled_lang_datasets, ) else: dataset = ConcatDataset(lang_datasets) lang_splits = [split] for lang_id, lang_dataset in enumerate(lang_datasets): split_name = split + "_" + languages[lang_id] lang_splits.append(split_name) self.datasets[split_name] = lang_dataset if split in self.cfg.valid_subset: self.cfg.valid_subset = self.cfg.valid_subset.replace( split, ",".join(lang_splits) ) with data_utils.numpy_seed(self.cfg.seed + epoch): shuffle = np.random.permutation(len(dataset)) self.datasets[split] = SortDataset( dataset, sort_order=[ shuffle, dataset.sizes, ], )