# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import logging import math from argparse import Namespace from pathlib import Path from typing import List import torch import torch.nn as nn from fairseq import utils from fairseq.data import Dictionary from fairseq.data.audio.data_cfg import MultitaskConfig, S2SDataConfig from fairseq.data.audio.speech_to_speech_dataset import SpeechToSpeechDatasetCreator from fairseq.data.audio.speech_to_text_dataset import ( SpeechToTextDataset, TextTargetMultitaskData, ) from fairseq.tasks import LegacyFairseqTask, register_task from fairseq.tasks.speech_to_text import DummyMultiTask from fairseq.tasks.text_to_speech import batch_mel_cepstral_distortion logger = logging.getLogger(__name__) class StackUnitSequenceGenerator(nn.Module): def __init__(self, tgt_dict, vocab_size): super().__init__() self.pad = tgt_dict.pad() self.eos = tgt_dict.eos() self.unk = tgt_dict.unk() self.offset = len(tgt_dict) - vocab_size self.vocab_size = vocab_size def pack_units(self, input: torch.Tensor, n_frames_per_step) -> torch.Tensor: if n_frames_per_step <= 1: return input bsz, _, n = input.shape assert n == n_frames_per_step scale = [ pow(self.vocab_size, n_frames_per_step - 1 - i) for i in range(n_frames_per_step) ] scale = torch.LongTensor(scale).squeeze(0).to(input.device) mask = input >= self.offset res = ((input - self.offset) * scale * mask).sum(dim=2) + self.offset return res @torch.no_grad() def generate(self, models, sample, **kwargs): # currently only support viterbi search for stacked units model = models[0] model.eval() max_len = model.max_decoder_positions() # TODO: incorporate max_len_a and max_len_b src_tokens = sample["net_input"]["src_tokens"] src_lengths = sample["net_input"]["src_lengths"] bsz, src_len, _ = src_tokens.size() n_frames_per_step = model.decoder.n_frames_per_step # initialize encoder_out = model.forward_encoder( src_tokens, src_lengths, speaker=sample["speaker"] ) incremental_state = {} pred_out, attn, scores = [], [], [] finished = src_tokens.new_zeros((bsz,)).bool() prev_output_tokens = src_lengths.new_zeros((bsz, 1)).long().fill_(self.eos) for _ in range(max_len): cur_out, cur_extra = model.forward_decoder( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, ) lprobs = model.get_normalized_probs([cur_out], log_probs=True) # never select pad, unk lprobs[:, :, self.pad] = -math.inf lprobs[:, :, self.unk] = -math.inf cur_pred_lprob, cur_pred_out = torch.max(lprobs, dim=2) scores.append(cur_pred_lprob) pred_out.append(cur_pred_out) prev_output_tokens = torch.cat( ( prev_output_tokens, self.pack_units( cur_pred_out.view(bsz, 1, n_frames_per_step), n_frames_per_step ), ), dim=1, ) attn.append(cur_extra["attn"][0]) cur_finished = torch.any(cur_pred_out.squeeze(1) == self.eos, dim=1) finished = finished | cur_finished if finished.sum().item() == bsz: break pred_out = torch.cat(pred_out, dim=1).view(bsz, -1) attn = torch.cat(attn, dim=2) alignment = attn.max(dim=1)[1] attn = attn.repeat_interleave(n_frames_per_step, dim=2) alignment = alignment.repeat_interleave(n_frames_per_step, dim=1) scores = torch.cat(scores, dim=1) eos_idx = (pred_out == self.eos).nonzero(as_tuple=True) out_lens = src_lengths.new_zeros((bsz,)).long().fill_(max_len) for b, l in zip(eos_idx[0], eos_idx[1]): out_lens[b] = min(l, out_lens[b]) hypos = [ [ { "tokens": pred_out[b, :out_len], "attn": attn[b, :, :out_len], "alignment": alignment[b, :out_len], "positional_scores": scores[b, :out_len], "score": utils.item(scores[b, :out_len].sum().data), } ] for b, out_len in zip(range(bsz), out_lens) ] return hypos @register_task("speech_to_speech") class SpeechToSpeechTask(LegacyFairseqTask): @classmethod def add_args(cls, parser): parser.add_argument("data", help="manifest root path") parser.add_argument( "--config-yaml", type=str, default="config.yaml", help="Configuration YAML filename (under manifest root)", ) parser.add_argument( "--multitask-config-yaml", type=str, default=None, help="Configuration YAML filename for the multitasks (under manifest root)", ) parser.add_argument( "--max-source-positions", default=6000, type=int, metavar="N", help="max number of tokens in the source sequence", ) parser.add_argument( "--max-target-positions", default=1024, type=int, metavar="N", help="max number of tokens in the target sequence", ) parser.add_argument( "--target-is-code", action="store_true", help="set if target is discrete unit instead of spectrogram", ) parser.add_argument( "--target-code-size", type=int, default=None, help="# discrete units" ) parser.add_argument( "--n-frames-per-step", type=int, default=1, help="# stacked frames, use 0 for reduced discrete unit sequence", ) parser.add_argument("--eval-inference", action="store_true") parser.add_argument( "--eval-args", type=str, default="{}", help='generation args for speech-to-unit model , e.g., \'{"beam": 5, "max_len_a": 1}\', as JSON string', ) parser.add_argument("--eos-prob-threshold", type=float, default=0.5) parser.add_argument( "--mcd-normalize-type", type=str, default="targ", choices=["targ", "pred", "path"], ) parser.add_argument( "--vocoder", type=str, default="griffin_lim", choices=["griffin_lim", "hifigan", "code_hifigan"], ) parser.add_argument("--spec-bwd-max-iter", type=int, default=8) parser.add_argument( "--infer-target-lang", type=str, default="", help="target language for inference", ) def __init__(self, args, tgt_dict, infer_tgt_lang_id=None): super().__init__(args) self.tgt_dict = tgt_dict self.data_cfg = S2SDataConfig(Path(args.data) / args.config_yaml) self.multitask_tasks = {} self.tgt_dict_mt = None self.eos_token_mt = None if getattr(args, "multitask_config_yaml", None) is not None: multitask_cfg = MultitaskConfig( Path(args.data) / args.multitask_config_yaml ) first_pass_task_idx = multitask_cfg.first_pass_decoder_task_index for i, (task_name, task_config) in enumerate( multitask_cfg.get_all_tasks().items() ): task_obj = DummyMultiTask( task_config, task_config.tgt_dict, first_pass=i == first_pass_task_idx, ) self.multitask_tasks[task_name] = task_obj if task_obj.is_first_pass_decoder: self.tgt_dict_mt = task_obj.target_dictionary if task_config.prepend_bos_and_append_tgt_lang_tag: self.eos_token_mt = task_config.eos_token assert not isinstance(self.eos_token_mt, List) if not self.eos_token_mt: raise Warning( "Please provide eos_token in --multitask-config-yaml to replace eos in sequence generator" ) self._infer_tgt_lang_id = infer_tgt_lang_id @classmethod def setup_task(cls, args, **kwargs): data_cfg = data_cfg = S2SDataConfig(Path(args.data) / args.config_yaml) tgt_dict = None infer_tgt_lang_id = None if args.target_is_code: if data_cfg.prepend_tgt_lang_tag_as_bos: # dictionary with language tags dict_path = Path(args.data) / data_cfg.vocab_filename if not dict_path.is_file(): raise FileNotFoundError( f"Dict has to be provided when setting prepend_tgt_lang_tag_as_bos: true, but dict not found: {dict_path}" ) tgt_dict = Dictionary.load(dict_path.as_posix()) # target langauge for inference if args.infer_target_lang != "": tgt_lang_tag = SpeechToTextDataset.LANG_TAG_TEMPLATE.format( args.infer_target_lang ) infer_tgt_lang_id = tgt_dict.index(tgt_lang_tag) assert infer_tgt_lang_id != tgt_dict.unk() else: assert args.target_code_size is not None tgt_dict = Dictionary() for i in range(args.target_code_size): tgt_dict.add_symbol(str(i)) logger.info(f"dictionary size: " f"{len(tgt_dict):,}") if getattr(args, "train_subset", None) is not None: if not all(s.startswith("train") for s in args.train_subset.split(",")): raise ValueError('Train splits should be named like "train*".') assert args.n_frames_per_step >= 1 assert ( not args.eval_inference or (args.target_is_code and args.vocoder == "code_hifigan") or (not args.target_is_code and args.vocoder != "code_hifigan") ) return cls(args, tgt_dict, infer_tgt_lang_id=infer_tgt_lang_id) def build_criterion(self, args): from fairseq import criterions if len(self.multitask_tasks) > 0: if self.args.target_is_code and not args._name.startswith("speech_to_unit"): raise ValueError( "set --criterion speech_to_unit for speech-to-unit loss with multitask" ) elif not self.args.target_is_code and not args._name.startswith( "speech_to_spectrogram" ): raise ValueError( "set --criterion speech_to_spectrogram for speech-to-spectrogram loss with multitask" ) return criterions.build_criterion(args, self) def load_dataset(self, split, epoch=1, combine=False, **kwargs): self.datasets[split] = SpeechToSpeechDatasetCreator.from_tsv( root=self.args.data, data_cfg=self.data_cfg, splits=split, is_train_split=split.startswith("train"), epoch=epoch, seed=self.args.seed, target_is_code=self.args.target_is_code, tgt_dict=self.target_dictionary, n_frames_per_step=self.args.n_frames_per_step, multitask=self.multitask_tasks, ) @property def target_dictionary(self): return self.tgt_dict @property def target_dictionary_mt(self): return self.tgt_dict_mt @property def source_dictionary(self): return None def max_positions(self): return self.args.max_source_positions, self.args.max_target_positions def build_model(self, args, from_checkpoint=False): args.input_feat_per_channel = self.data_cfg.input_feat_per_channel args.input_channels = self.data_cfg.input_transformed_channels args.target_speaker_embed = self.data_cfg.target_speaker_embed is not None args.n_frames_per_step = self.args.n_frames_per_step model = super().build_model(args, from_checkpoint) if len(self.multitask_tasks) > 0: from fairseq.models.speech_to_speech.s2s_transformer import ( S2STransformerMultitaskModelBase, ) assert isinstance(model, S2STransformerMultitaskModelBase) if self.args.eval_inference: self.eval_gen_args = json.loads(self.args.eval_args) self.generator = self.build_generator( [model], Namespace(**self.eval_gen_args) ) return model def build_generator_dual_decoder( self, models, args, extra_gen_cls_kwargs=None, ): from examples.speech_to_speech.unity.sequence_generator_multi_decoder import ( MultiDecoderSequenceGenerator, ) return MultiDecoderSequenceGenerator( models, self.target_dictionary, self.target_dictionary_mt, beam_size=max(1, getattr(args, "beam", 1)), beam_size_mt=max(1, getattr(args, "beam_mt", 1)), max_len_a=getattr(args, "max_len_a", 0), max_len_b=getattr(args, "max_len_b", 200), max_len_a_mt=getattr(args, "max_len_a_mt", 0), max_len_b_mt=getattr(args, "max_len_b_mt", 200), min_len=getattr(args, "min_len", 1), normalize_scores=(not getattr(args, "unnormalized", False)), len_penalty=getattr(args, "lenpen", 1), unk_penalty=getattr(args, "unkpen", 0), temperature=getattr(args, "temperature", 1.0), match_source_len=getattr(args, "match_source_len", False), no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0), **extra_gen_cls_kwargs, ) def build_generator( self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, ): if not self.args.target_is_code or self.args.eval_inference: from fairseq.models.text_to_speech.vocoder import get_vocoder self.vocoder = get_vocoder(self.args, self.data_cfg) self.vocoder = ( self.vocoder.cuda() if torch.cuda.is_available() and not self.args.cpu else self.vocoder.cpu() ) has_dual_decoder = getattr(models[0], "mt_task_name", None) is not None if self.args.target_is_code: if self.args.n_frames_per_step == 1: if has_dual_decoder: seq_generator = self.build_generator_dual_decoder( models, args, extra_gen_cls_kwargs=extra_gen_cls_kwargs, ) else: seq_generator = super().build_generator( models, args, seq_gen_cls=None, extra_gen_cls_kwargs=extra_gen_cls_kwargs, ) else: assert ( getattr(args, "beam", 1) == 1 and getattr(args, "nbest", 1) == 1 ), "only support viterbi search for stacked units" seq_generator = StackUnitSequenceGenerator( self.tgt_dict, self.args.target_code_size, ) else: if has_dual_decoder: if getattr(args, "teacher_forcing", False): raise NotImplementedError else: from fairseq.speech_generator import MultiDecoderSpeechGenerator generator = MultiDecoderSpeechGenerator lang_token_ids_aux = { i for s, i in self.tgt_dict_mt.indices.items() if TextTargetMultitaskData.is_lang_tag(s) } if extra_gen_cls_kwargs is None: extra_gen_cls_kwargs = {} extra_gen_cls_kwargs[ "symbols_to_strip_from_output" ] = lang_token_ids_aux eos_id_mt = ( self.tgt_dict_mt.index(self.eos_token_mt) if self.eos_token_mt else None ) assert eos_id_mt != self.tgt_dict_mt.unk() extra_gen_cls_kwargs["eos_mt"] = eos_id_mt seq_generator = generator( models, args, self.vocoder, self.data_cfg, self.target_dictionary_mt, max_iter=self.args.max_target_positions, eos_prob_threshold=self.args.eos_prob_threshold, **extra_gen_cls_kwargs, ) else: if getattr(args, "teacher_forcing", False): from fairseq.speech_generator import ( TeacherForcingAutoRegressiveSpeechGenerator, ) generator = TeacherForcingAutoRegressiveSpeechGenerator logger.info("Teacher forcing mode for generation") else: from fairseq.speech_generator import AutoRegressiveSpeechGenerator generator = AutoRegressiveSpeechGenerator seq_generator = generator( models[0], self.vocoder, self.data_cfg, max_iter=self.args.max_target_positions, eos_prob_threshold=self.args.eos_prob_threshold, ) return seq_generator def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): for task_name, task_obj in self.multitask_tasks.items(): criterion.set_multitask_loss_weight( task_name, task_obj.args.get_loss_weight(update_num) ) if task_name in model.multitask_decoders: model.multitask_decoders[task_name].train() loss, sample_size, logging_output = super().train_step( sample, model, criterion, optimizer, update_num, ignore_grad ) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): for task_name in self.multitask_tasks.keys(): if task_name in model.multitask_decoders: model.multitask_decoders[task_name].eval() loss, sample_size, logging_output = super().valid_step(sample, model, criterion) if self.args.eval_inference: hypos, inference_losses = self.valid_step_with_inference( sample, model, self.generator ) for k, v in inference_losses.items(): assert k not in logging_output logging_output[k] = v return loss, sample_size, logging_output def valid_step_with_inference(self, sample, model, generator): if self.args.target_is_code: hypos = generator.generate([model], sample) tgt_lens = ( sample["target_lengths"] - 1 ) * self.args.n_frames_per_step # strip for b, (f, l) in enumerate(zip(sample["target"], tgt_lens)): hypos[b][0]["targ_waveform"] = self.vocoder( {"code": f[:l] - 4}, # remove , , , dur_prediction=self.eval_gen_args.get("dur_prediction", False), ) if len(hypos[b][0]["tokens"]) > 0: hypos[b][0]["waveform"] = self.vocoder( {"code": hypos[b][0]["tokens"] - 4}, dur_prediction=self.eval_gen_args.get("dur_prediction", False), ) else: hypos[b][0]["waveform"] = torch.flip( hypos[b][0]["targ_waveform"], dims=[0] ) else: hypos = [ [hypo] for hypo in generator.generate(model, sample, has_targ=True) ] losses = { "mcd_loss": 0.0, "targ_frames": 0.0, "pred_frames": 0.0, "path_frames": 0.0, "nins": 0.0, "ndel": 0.0, } rets = batch_mel_cepstral_distortion( [hypo[0]["targ_waveform"] for hypo in hypos], [hypo[0]["waveform"] for hypo in hypos], self.data_cfg.output_sample_rate, normalize_type=None, ) for d, extra in rets: pathmap = extra[-1] losses["mcd_loss"] += d.item() losses["targ_frames"] += pathmap.size(0) losses["pred_frames"] += pathmap.size(1) losses["path_frames"] += pathmap.sum().item() losses["nins"] += (pathmap.sum(dim=1) - 1).sum().item() losses["ndel"] += (pathmap.sum(dim=0) - 1).sum().item() losses["norm_frames"] = losses[ f"{getattr(self.args, 'mcd_normalize_type', 'targ')}_frames" ] return hypos, losses def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): with torch.no_grad(): if self._infer_tgt_lang_id is not None: return generator.generate( models, sample, prefix_tokens=prefix_tokens, constraints=constraints, bos_token=self._infer_tgt_lang_id, ) else: return super().inference_step( generator, models, sample, prefix_tokens=prefix_tokens, constraints=constraints, )