# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import itertools import json import logging import os from typing import Optional from argparse import Namespace from omegaconf import II import numpy as np from fairseq import metrics, utils from fairseq.data import ( AppendTokenDataset, ConcatDataset, LanguagePairDataset, PrependTokenDataset, StripTokenDataset, TruncateDataset, data_utils, encoders, indexed_dataset, ) from fairseq.data.indexed_dataset import get_available_dataset_impl from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.tasks import FairseqTask, register_task EVAL_BLEU_ORDER = 4 logger = logging.getLogger(__name__) def load_langpair_dataset( data_path, split, src, src_dict, tgt, tgt_dict, combine, dataset_impl, upsample_primary, left_pad_source, left_pad_target, max_source_positions, max_target_positions, prepend_bos=False, load_alignments=False, truncate_source=False, append_source_id=False, num_buckets=0, shuffle=True, pad_to_multiple=1, prepend_bos_src=None, ): def split_exists(split, src, tgt, lang, data_path): filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang)) return indexed_dataset.dataset_exists(filename, impl=dataset_impl) src_datasets = [] tgt_datasets = [] for k in itertools.count(): split_k = split + (str(k) if k > 0 else "") # infer langcode if split_exists(split_k, src, tgt, src, data_path): prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt)) elif split_exists(split_k, tgt, src, src, data_path): prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src)) else: if k > 0: break else: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, data_path) ) src_dataset = data_utils.load_indexed_dataset( prefix + src, src_dict, dataset_impl ) if truncate_source: src_dataset = AppendTokenDataset( TruncateDataset( StripTokenDataset(src_dataset, src_dict.eos()), max_source_positions - 1, ), src_dict.eos(), ) src_datasets.append(src_dataset) tgt_dataset = data_utils.load_indexed_dataset( prefix + tgt, tgt_dict, dataset_impl ) if tgt_dataset is not None: tgt_datasets.append(tgt_dataset) logger.info( "{} {} {}-{} {} examples".format( data_path, split_k, src, tgt, len(src_datasets[-1]) ) ) if not combine: break assert len(src_datasets) == len(tgt_datasets) or len(tgt_datasets) == 0 if len(src_datasets) == 1: src_dataset = src_datasets[0] tgt_dataset = tgt_datasets[0] if len(tgt_datasets) > 0 else None else: sample_ratios = [1] * len(src_datasets) sample_ratios[0] = upsample_primary src_dataset = ConcatDataset(src_datasets, sample_ratios) if len(tgt_datasets) > 0: tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios) else: tgt_dataset = None if prepend_bos: assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index") src_dataset = PrependTokenDataset(src_dataset, src_dict.bos()) if tgt_dataset is not None: tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos()) elif prepend_bos_src is not None: logger.info(f"prepending src bos: {prepend_bos_src}") src_dataset = PrependTokenDataset(src_dataset, prepend_bos_src) eos = None if append_source_id: src_dataset = AppendTokenDataset( src_dataset, src_dict.index("[{}]".format(src)) ) if tgt_dataset is not None: tgt_dataset = AppendTokenDataset( tgt_dataset, tgt_dict.index("[{}]".format(tgt)) ) eos = tgt_dict.index("[{}]".format(tgt)) align_dataset = None if load_alignments: align_path = os.path.join(data_path, "{}.align.{}-{}".format(split, src, tgt)) if indexed_dataset.dataset_exists(align_path, impl=dataset_impl): align_dataset = data_utils.load_indexed_dataset( align_path, None, dataset_impl ) tgt_dataset_sizes = tgt_dataset.sizes if tgt_dataset is not None else None return LanguagePairDataset( src_dataset, src_dataset.sizes, src_dict, tgt_dataset, tgt_dataset_sizes, tgt_dict, left_pad_source=left_pad_source, left_pad_target=left_pad_target, align_dataset=align_dataset, eos=eos, num_buckets=num_buckets, shuffle=shuffle, pad_to_multiple=pad_to_multiple, ) @dataclass class TranslationConfig(FairseqDataclass): data: Optional[str] = field( default=None, metadata={ "help": "colon separated path to data directories list, will be iterated upon during epochs " "in round-robin manner; however, valid and test data are always in the first directory " "to avoid the need for repeating them in all directories" }, ) source_lang: Optional[str] = field( default=None, metadata={ "help": "source language", "argparse_alias": "-s", }, ) target_lang: Optional[str] = field( default=None, metadata={ "help": "target language", "argparse_alias": "-t", }, ) load_alignments: bool = field( default=False, metadata={"help": "load the binarized alignments"} ) left_pad_source: bool = field( default=True, metadata={"help": "pad the source on the left"} ) left_pad_target: bool = field( default=False, metadata={"help": "pad the target on the left"} ) max_source_positions: int = field( default=1024, metadata={"help": "max number of tokens in the source sequence"} ) max_target_positions: int = field( default=1024, metadata={"help": "max number of tokens in the target sequence"} ) upsample_primary: int = field( default=-1, metadata={"help": "the amount of upsample primary dataset"} ) truncate_source: bool = field( default=False, metadata={"help": "truncate source to max-source-positions"} ) num_batch_buckets: int = field( default=0, metadata={ "help": "if >0, then bucket source and target lengths into " "N buckets and pad accordingly; this is useful on TPUs to minimize the number of compilations" }, ) train_subset: str = II("dataset.train_subset") dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( "dataset.dataset_impl" ) required_seq_len_multiple: int = II("dataset.required_seq_len_multiple") # options for reporting BLEU during validation eval_bleu: bool = field( default=False, metadata={"help": "evaluation with BLEU scores"} ) eval_bleu_args: Optional[str] = field( default="{}", metadata={ "help": 'generation args for BLUE scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string' }, ) eval_bleu_detok: str = field( default="space", metadata={ "help": "detokenize before computing BLEU (e.g., 'moses'); required if using --eval-bleu; " "use 'space' to disable detokenization; see fairseq.data.encoders for other options" }, ) eval_bleu_detok_args: Optional[str] = field( default="{}", metadata={"help": "args for building the tokenizer, if needed, as JSON string"}, ) eval_tokenized_bleu: bool = field( default=False, metadata={"help": "compute tokenized BLEU instead of sacrebleu"} ) eval_bleu_remove_bpe: Optional[str] = field( default=None, metadata={ "help": "remove BPE before computing BLEU", "argparse_const": "@@ ", }, ) eval_bleu_print_samples: bool = field( default=False, metadata={"help": "print sample generations during validation"} ) @register_task("translation", dataclass=TranslationConfig) class TranslationTask(FairseqTask): """ Translate from one (source) language to another (target) language. Args: src_dict (~fairseq.data.Dictionary): dictionary for the source language tgt_dict (~fairseq.data.Dictionary): dictionary for the target language .. note:: The translation task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate` and :mod:`fairseq-interactive`. """ cfg: TranslationConfig def __init__(self, cfg: TranslationConfig, src_dict, tgt_dict): super().__init__(cfg) self.src_dict = src_dict self.tgt_dict = tgt_dict @classmethod def setup_task(cls, cfg: TranslationConfig, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ paths = utils.split_paths(cfg.data) assert len(paths) > 0 # find language pair automatically if cfg.source_lang is None or cfg.target_lang is None: cfg.source_lang, cfg.target_lang = data_utils.infer_language_pair(paths[0]) if cfg.source_lang is None or cfg.target_lang is None: raise Exception( "Could not infer language pair, please provide it explicitly" ) # load dictionaries src_dict = cls.load_dictionary( os.path.join(paths[0], "dict.{}.txt".format(cfg.source_lang)) ) tgt_dict = cls.load_dictionary( os.path.join(paths[0], "dict.{}.txt".format(cfg.target_lang)) ) assert src_dict.pad() == tgt_dict.pad() assert src_dict.eos() == tgt_dict.eos() assert src_dict.unk() == tgt_dict.unk() logger.info("[{}] dictionary: {} types".format(cfg.source_lang, len(src_dict))) logger.info("[{}] dictionary: {} types".format(cfg.target_lang, len(tgt_dict))) return cls(cfg, src_dict, tgt_dict) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.cfg.data) assert len(paths) > 0 if split != self.cfg.train_subset: # if not training data set, use the first shard for valid and test paths = paths[:1] data_path = paths[(epoch - 1) % len(paths)] # infer langcode src, tgt = self.cfg.source_lang, self.cfg.target_lang self.datasets[split] = load_langpair_dataset( data_path, split, src, self.src_dict, tgt, self.tgt_dict, combine=combine, dataset_impl=self.cfg.dataset_impl, upsample_primary=self.cfg.upsample_primary, left_pad_source=self.cfg.left_pad_source, left_pad_target=self.cfg.left_pad_target, max_source_positions=self.cfg.max_source_positions, max_target_positions=self.cfg.max_target_positions, load_alignments=self.cfg.load_alignments, truncate_source=self.cfg.truncate_source, num_buckets=self.cfg.num_batch_buckets, shuffle=(split != "test"), pad_to_multiple=self.cfg.required_seq_len_multiple, ) def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None): return LanguagePairDataset( src_tokens, src_lengths, self.source_dictionary, tgt_dict=self.target_dictionary, constraints=constraints, ) def build_model(self, cfg, from_checkpoint=False): model = super().build_model(cfg, from_checkpoint) if self.cfg.eval_bleu: detok_args = json.loads(self.cfg.eval_bleu_detok_args) self.tokenizer = encoders.build_tokenizer( Namespace(tokenizer=self.cfg.eval_bleu_detok, **detok_args) ) gen_args = json.loads(self.cfg.eval_bleu_args) self.sequence_generator = self.build_generator( [model], Namespace(**gen_args) ) return model def valid_step(self, sample, model, criterion): loss, sample_size, logging_output = super().valid_step(sample, model, criterion) if self.cfg.eval_bleu: bleu = self._inference_with_bleu(self.sequence_generator, sample, model) logging_output["_bleu_sys_len"] = bleu.sys_len logging_output["_bleu_ref_len"] = bleu.ref_len # we split counts into separate entries so that they can be # summed efficiently across workers using fast-stat-sync assert len(bleu.counts) == EVAL_BLEU_ORDER for i in range(EVAL_BLEU_ORDER): logging_output["_bleu_counts_" + str(i)] = bleu.counts[i] logging_output["_bleu_totals_" + str(i)] = bleu.totals[i] return loss, sample_size, logging_output def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) if self.cfg.eval_bleu: def sum_logs(key): import torch result = sum(log.get(key, 0) for log in logging_outputs) if torch.is_tensor(result): result = result.cpu() return result counts, totals = [], [] for i in range(EVAL_BLEU_ORDER): counts.append(sum_logs("_bleu_counts_" + str(i))) totals.append(sum_logs("_bleu_totals_" + str(i))) if max(totals) > 0: # log counts as numpy arrays -- log_scalar will sum them correctly metrics.log_scalar("_bleu_counts", np.array(counts)) metrics.log_scalar("_bleu_totals", np.array(totals)) metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len")) metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len")) def compute_bleu(meters): import inspect try: from sacrebleu.metrics import BLEU comp_bleu = BLEU.compute_bleu except ImportError: # compatibility API for sacrebleu 1.x import sacrebleu comp_bleu = sacrebleu.compute_bleu fn_sig = inspect.getfullargspec(comp_bleu)[0] if "smooth_method" in fn_sig: smooth = {"smooth_method": "exp"} else: smooth = {"smooth": "exp"} bleu = comp_bleu( correct=meters["_bleu_counts"].sum, total=meters["_bleu_totals"].sum, sys_len=int(meters["_bleu_sys_len"].sum), ref_len=int(meters["_bleu_ref_len"].sum), **smooth, ) return round(bleu.score, 2) metrics.log_derived("bleu", compute_bleu) def max_positions(self): """Return the max sentence length allowed by the task.""" return (self.cfg.max_source_positions, self.cfg.max_target_positions) @property def source_dictionary(self): """Return the source :class:`~fairseq.data.Dictionary`.""" return self.src_dict @property def target_dictionary(self): """Return the target :class:`~fairseq.data.Dictionary`.""" return self.tgt_dict def _inference_with_bleu(self, generator, sample, model): import sacrebleu def decode(toks, escape_unk=False): s = self.tgt_dict.string( toks.int().cpu(), self.cfg.eval_bleu_remove_bpe, # The default unknown string in fairseq is ``, but # this is tokenized by sacrebleu as `< unk >`, inflating # BLEU scores. Instead, we use a somewhat more verbose # alternative that is unlikely to appear in the real # reference, but doesn't get split into multiple tokens. unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"), ) if self.tokenizer: s = self.tokenizer.decode(s) return s gen_out = self.inference_step(generator, [model], sample, prefix_tokens=None) hyps, refs = [], [] for i in range(len(gen_out)): hyps.append(decode(gen_out[i][0]["tokens"])) refs.append( decode( utils.strip_pad(sample["target"][i], self.tgt_dict.pad()), escape_unk=True, # don't count as matches to the hypo ) ) if self.cfg.eval_bleu_print_samples: logger.info("example hypothesis: " + hyps[0]) logger.info("example reference: " + refs[0]) if self.cfg.eval_tokenized_bleu: return sacrebleu.corpus_bleu(hyps, [refs], tokenize="none") else: return sacrebleu.corpus_bleu(hyps, [refs])