# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import logging import os import random from pathlib import Path import numpy as np import torch import torch.utils.data from . import data_utils from fairseq.data.fairseq_dataset import FairseqDataset F0_FRAME_SPACE = 0.005 # sec logger = logging.getLogger(__name__) class ExpressiveCodeDataConfig(object): def __init__(self, json_path): with open(json_path, "r") as f: self.config = json.load(f) self._manifests = self.config["manifests"] @property def manifests(self): return self._manifests @property def n_units(self): return self.config["n_units"] @property def sampling_rate(self): return self.config["sampling_rate"] @property def code_hop_size(self): return self.config["code_hop_size"] @property def f0_stats(self): """pre-computed f0 statistics path""" return self.config.get("f0_stats", None) @property def f0_vq_type(self): """naive or precomp""" return self.config["f0_vq_type"] @property def f0_vq_name(self): return self.config["f0_vq_name"] def get_f0_vq_naive_quantizer(self, log, norm_mean, norm_std): key = "log" if log else "linear" if norm_mean and norm_std: key += "_mean_std_norm" elif norm_mean: key += "_mean_norm" else: key += "_none_norm" return self.config["f0_vq_naive_quantizer"][key] @property def f0_vq_n_units(self): return self.config["f0_vq_n_units"] @property def multispkr(self): """how to parse speaker label from audio path""" return self.config.get("multispkr", None) def get_f0(audio, rate=16000): try: import amfm_decompy.basic_tools as basic import amfm_decompy.pYAAPT as pYAAPT from librosa.util import normalize except ImportError: raise "Please install amfm_decompy (`pip install AMFM-decompy`) and librosa (`pip install librosa`)." assert audio.ndim == 1 frame_length = 20.0 # ms to_pad = int(frame_length / 1000 * rate) // 2 audio = normalize(audio) * 0.95 audio = np.pad(audio, (to_pad, to_pad), "constant", constant_values=0) audio = basic.SignalObj(audio, rate) pitch = pYAAPT.yaapt( audio, frame_length=frame_length, frame_space=F0_FRAME_SPACE * 1000, nccf_thresh1=0.25, tda_frame_length=25.0, ) f0 = pitch.samp_values return f0 def interpolate_f0(f0): try: from scipy.interpolate import interp1d except ImportError: raise "Please install scipy (`pip install scipy`)" orig_t = np.arange(f0.shape[0]) f0_interp = f0[:] ii = f0_interp != 0 if ii.sum() > 1: f0_interp = interp1d( orig_t[ii], f0_interp[ii], bounds_error=False, kind="linear", fill_value=0 )(orig_t) f0_interp = torch.Tensor(f0_interp).type_as(f0).to(f0.device) return f0_interp def naive_quantize(x, edges): bin_idx = (x.view(-1, 1) > edges.view(1, -1)).long().sum(dim=1) return bin_idx def load_wav(full_path): try: import soundfile as sf except ImportError: raise "Please install soundfile (`pip install SoundFile`)" data, sampling_rate = sf.read(full_path) return data, sampling_rate def parse_code(code_str, dictionary, append_eos): code, duration = torch.unique_consecutive( torch.ShortTensor(list(map(int, code_str.split()))), return_counts=True ) code = " ".join(map(str, code.tolist())) code = dictionary.encode_line(code, append_eos).short() if append_eos: duration = torch.cat((duration, duration.new_zeros((1,))), dim=0) # eos duration = duration.short() return code, duration def parse_manifest(manifest, dictionary): audio_files = [] codes = [] durations = [] speakers = [] with open(manifest) as info: for line in info.readlines(): sample = eval(line.strip()) if "cpc_km100" in sample: k = "cpc_km100" elif "hubert_km100" in sample: k = "hubert_km100" elif "phone" in sample: k = "phone" else: assert False, "unknown format" code = sample[k] code, duration = parse_code(code, dictionary, append_eos=True) codes.append(code) durations.append(duration) audio_files.append(sample["audio"]) speakers.append(sample.get("speaker", None)) return audio_files, codes, durations, speakers def parse_speaker(path, method): if type(path) == str: path = Path(path) if method == "parent_name": return path.parent.name elif method == "parent_parent_name": return path.parent.parent.name elif method == "_": return path.name.split("_")[0] elif method == "single": return "A" elif callable(method): return method(path) else: raise NotImplementedError() def get_f0_by_filename(filename, tgt_sampling_rate): audio, sampling_rate = load_wav(filename) if sampling_rate != tgt_sampling_rate: raise ValueError( "{} SR doesn't match target {} SR".format(sampling_rate, tgt_sampling_rate) ) # compute un-interpolated f0, and use Ann's interp in __getitem__ if set f0 = get_f0(audio, rate=tgt_sampling_rate) f0 = torch.from_numpy(f0.astype(np.float32)) return f0 def align_f0_to_durations(f0, durations, f0_code_ratio, tol=1): code_len = durations.sum() targ_len = int(f0_code_ratio * code_len) diff = f0.size(0) - targ_len assert abs(diff) <= tol, ( f"Cannot subsample F0: |{f0.size(0)} - {f0_code_ratio}*{code_len}|" f" > {tol} (dur=\n{durations})" ) if diff > 0: f0 = f0[:targ_len] elif diff < 0: f0 = torch.cat((f0, f0.new_full((-diff,), f0[-1])), 0) f0_offset = 0.0 seg_f0s = [] for dur in durations: f0_dur = dur.item() * f0_code_ratio seg_f0 = f0[int(f0_offset) : int(f0_offset + f0_dur)] seg_f0 = seg_f0[seg_f0 != 0] if len(seg_f0) == 0: seg_f0 = torch.tensor(0).type(seg_f0.type()) else: seg_f0 = seg_f0.mean() seg_f0s.append(seg_f0) f0_offset += f0_dur assert int(f0_offset) == f0.size(0), f"{f0_offset} {f0.size()} {durations.sum()}" return torch.tensor(seg_f0s) class Paddings(object): def __init__(self, code_val, dur_val=0, f0_val=-2.0): self.code = code_val self.dur = dur_val self.f0 = f0_val class Shifts(object): def __init__(self, shifts_str, pads): self._shifts = list(map(int, shifts_str.split(","))) assert len(self._shifts) == 2, self._shifts assert all(s >= 0 for s in self._shifts) self.extra_length = max(s for s in self._shifts) self.pads = pads @property def dur(self): return self._shifts[0] @property def f0(self): return self._shifts[1] @staticmethod def shift_one(seq, left_pad_num, right_pad_num, pad): assert seq.ndim == 1 bos = seq.new_full((left_pad_num,), pad) eos = seq.new_full((right_pad_num,), pad) seq = torch.cat([bos, seq, eos]) mask = torch.ones_like(seq).bool() mask[left_pad_num : len(seq) - right_pad_num] = 0 return seq, mask def __call__(self, code, dur, f0): if self.extra_length == 0: code_mask = torch.zeros_like(code).bool() dur_mask = torch.zeros_like(dur).bool() f0_mask = torch.zeros_like(f0).bool() return code, code_mask, dur, dur_mask, f0, f0_mask code, code_mask = self.shift_one(code, 0, self.extra_length, self.pads.code) dur, dur_mask = self.shift_one( dur, self.dur, self.extra_length - self.dur, self.pads.dur ) f0, f0_mask = self.shift_one( f0, self.f0, self.extra_length - self.f0, self.pads.f0 ) return code, code_mask, dur, dur_mask, f0, f0_mask class CodeDataset(FairseqDataset): def __init__( self, manifest, dictionary, dur_dictionary, f0_dictionary, config, discrete_dur, discrete_f0, log_f0, normalize_f0_mean, normalize_f0_std, interpolate_f0, return_filename=False, strip_filename=True, shifts="0,0", return_continuous_f0=False, ): random.seed(1234) self.dictionary = dictionary self.dur_dictionary = dur_dictionary self.f0_dictionary = f0_dictionary self.config = config # duration config self.discrete_dur = discrete_dur # pitch config self.discrete_f0 = discrete_f0 self.log_f0 = log_f0 self.normalize_f0_mean = normalize_f0_mean self.normalize_f0_std = normalize_f0_std self.interpolate_f0 = interpolate_f0 self.return_filename = return_filename self.strip_filename = strip_filename self.f0_code_ratio = config.code_hop_size / ( config.sampling_rate * F0_FRAME_SPACE ) # use lazy loading to avoid sharing file handlers across workers self.manifest = manifest self._codes = None self._durs = None self._f0s = None with open(f"{manifest}.leng.txt", "r") as f: lengs = [int(line.rstrip()) for line in f] edges = np.cumsum([0] + lengs) self.starts, self.ends = edges[:-1], edges[1:] with open(f"{manifest}.path.txt", "r") as f: self.file_names = [line.rstrip() for line in f] logger.info(f"num entries: {len(self.starts)}") if os.path.exists(f"{manifest}.f0_stat.pt"): self.f0_stats = torch.load(f"{manifest}.f0_stat.pt") elif config.f0_stats: self.f0_stats = torch.load(config.f0_stats) self.multispkr = config.multispkr if config.multispkr: with open(f"{manifest}.speaker.txt", "r") as f: self.spkrs = [line.rstrip() for line in f] self.id_to_spkr = sorted(self.spkrs) self.spkr_to_id = {k: v for v, k in enumerate(self.id_to_spkr)} self.pads = Paddings( dictionary.pad(), 0, # use 0 for duration padding f0_dictionary.pad() if discrete_f0 else -5.0, ) self.shifts = Shifts(shifts, pads=self.pads) self.return_continuous_f0 = return_continuous_f0 def get_data_handlers(self): logging.info(f"loading data for {self.manifest}") self._codes = np.load(f"{self.manifest}.code.npy", mmap_mode="r") self._durs = np.load(f"{self.manifest}.dur.npy", mmap_mode="r") if self.discrete_f0: if self.config.f0_vq_type == "precomp": self._f0s = np.load( f"{self.manifest}.{self.config.f0_vq_name}.npy", mmap_mode="r" ) elif self.config.f0_vq_type == "naive": self._f0s = np.load(f"{self.manifest}.f0.npy", mmap_mode="r") quantizers_path = self.config.get_f0_vq_naive_quantizer( self.log_f0, self.normalize_f0_mean, self.normalize_f0_std ) quantizers = torch.load(quantizers_path) n_units = self.config.f0_vq_n_units self._f0_quantizer = torch.from_numpy(quantizers[n_units]) else: raise ValueError(f"f0_vq_type {self.config.f0_vq_type} not supported") else: self._f0s = np.load(f"{self.manifest}.f0.npy", mmap_mode="r") def preprocess_f0(self, f0, stats): """ 1. interpolate 2. log transform (keep unvoiced frame 0) """ # TODO: change this to be dependent on config for naive quantizer f0 = f0.clone() if self.interpolate_f0: f0 = interpolate_f0(f0) mask = f0 != 0 # only process voiced frames if self.log_f0: f0[mask] = f0[mask].log() if self.normalize_f0_mean: mean = stats["logf0_mean"] if self.log_f0 else stats["f0_mean"] f0[mask] = f0[mask] - mean if self.normalize_f0_std: std = stats["logf0_std"] if self.log_f0 else stats["f0_std"] f0[mask] = f0[mask] / std return f0 def _get_raw_item(self, index): start, end = self.starts[index], self.ends[index] if self._codes is None: self.get_data_handlers() code = torch.from_numpy(np.array(self._codes[start:end])).long() dur = torch.from_numpy(np.array(self._durs[start:end])) f0 = torch.from_numpy(np.array(self._f0s[start:end])) return code, dur, f0 def __getitem__(self, index): code, dur, f0 = self._get_raw_item(index) code = torch.cat([code.new([self.dictionary.bos()]), code]) # use 0 for eos and bos dur = torch.cat([dur.new([0]), dur]) if self.discrete_dur: dur = self.dur_dictionary.encode_line( " ".join(map(str, dur.tolist())), append_eos=False ).long() else: dur = dur.float() # TODO: find a more elegant approach raw_f0 = None if self.discrete_f0: if self.config.f0_vq_type == "precomp": f0 = self.f0_dictionary.encode_line( " ".join(map(str, f0.tolist())), append_eos=False ).long() else: f0 = f0.float() f0 = self.preprocess_f0(f0, self.f0_stats[self.spkrs[index]]) if self.return_continuous_f0: raw_f0 = f0 raw_f0 = torch.cat([raw_f0.new([self.f0_dictionary.bos()]), raw_f0]) f0 = naive_quantize(f0, self._f0_quantizer) f0 = torch.cat([f0.new([self.f0_dictionary.bos()]), f0]) else: f0 = f0.float() if self.multispkr: f0 = self.preprocess_f0(f0, self.f0_stats[self.spkrs[index]]) else: f0 = self.preprocess_f0(f0, self.f0_stats) f0 = torch.cat([f0.new([0]), f0]) if raw_f0 is not None: *_, raw_f0, raw_f0_mask = self.shifts(code, dur, raw_f0) else: raw_f0_mask = None code, code_mask, dur, dur_mask, f0, f0_mask = self.shifts(code, dur, f0) if raw_f0_mask is not None: assert (raw_f0_mask == f0_mask).all() # is a padded frame if either input or output is padded feats = { "source": code[:-1], "target": code[1:], "mask": code_mask[1:].logical_or(code_mask[:-1]), "dur_source": dur[:-1], "dur_target": dur[1:], "dur_mask": dur_mask[1:].logical_or(dur_mask[:-1]), "f0_source": f0[:-1], "f0_target": f0[1:], "f0_mask": f0_mask[1:].logical_or(f0_mask[:-1]), } if raw_f0 is not None: feats["raw_f0"] = raw_f0[1:] if self.return_filename: fname = self.file_names[index] feats["filename"] = ( fname if not self.strip_filename else Path(fname).with_suffix("").name ) return feats def __len__(self): return len(self.starts) def size(self, index): return self.ends[index] - self.starts[index] + self.shifts.extra_length def num_tokens(self, index): return self.size(index) def collater(self, samples): pad_idx, eos_idx = self.dictionary.pad(), self.dictionary.eos() if len(samples) == 0: return {} src_tokens = data_utils.collate_tokens( [s["source"] for s in samples], pad_idx, eos_idx, left_pad=False ) tgt_tokens = data_utils.collate_tokens( [s["target"] for s in samples], pad_idx=pad_idx, eos_idx=pad_idx, # appending padding, eos is there already left_pad=False, ) src_durs, tgt_durs = [ data_utils.collate_tokens( [s[k] for s in samples], pad_idx=self.pads.dur, eos_idx=self.pads.dur, left_pad=False, ) for k in ["dur_source", "dur_target"] ] src_f0s, tgt_f0s = [ data_utils.collate_tokens( [s[k] for s in samples], pad_idx=self.pads.f0, eos_idx=self.pads.f0, left_pad=False, ) for k in ["f0_source", "f0_target"] ] mask, dur_mask, f0_mask = [ data_utils.collate_tokens( [s[k] for s in samples], pad_idx=1, eos_idx=1, left_pad=False, ) for k in ["mask", "dur_mask", "f0_mask"] ] src_lengths = torch.LongTensor([s["source"].numel() for s in samples]) n_tokens = sum(len(s["source"]) for s in samples) result = { "nsentences": len(samples), "ntokens": n_tokens, "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, "dur_src": src_durs, "f0_src": src_f0s, }, "target": tgt_tokens, "dur_target": tgt_durs, "f0_target": tgt_f0s, "mask": mask, "dur_mask": dur_mask, "f0_mask": f0_mask, } if "filename" in samples[0]: result["filename"] = [s["filename"] for s in samples] # TODO: remove this hack into the inference dataset if "prefix" in samples[0]: result["prefix"] = [s["prefix"] for s in samples] if "raw_f0" in samples[0]: raw_f0s = data_utils.collate_tokens( [s["raw_f0"] for s in samples], pad_idx=self.pads.f0, eos_idx=self.pads.f0, left_pad=False, ) result["raw_f0"] = raw_f0s return result