# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass, field from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn as nn from omegaconf import II from fairseq import utils from fairseq.data.data_utils import compute_mask_indices from fairseq.data.dictionary import Dictionary from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model from fairseq.models.wav2vec.wav2vec2 import ( EXTRACTOR_MODE_CHOICES, MASKING_DISTRIBUTION_CHOICES, LAYER_TYPE_CHOICES, ConvFeatureExtractionModel, TransformerEncoder, ) from fairseq.modules import GradMultiply, LayerNorm from fairseq.tasks.hubert_pretraining import ( HubertPretrainingConfig, HubertPretrainingTask, ) logger = logging.getLogger(__name__) @dataclass class HubertConfig(FairseqDataclass): label_rate: float = II("task.label_rate") extractor_mode: EXTRACTOR_MODE_CHOICES = field( default="default", metadata={ "help": "mode for feature extractor. default has a single group " "norm with d groups in the first conv block, whereas layer_norm " "has layer norms in every block (meant to use with normalize=True)" }, ) encoder_layers: int = field( default=12, metadata={"help": "num encoder layers in the transformer"} ) encoder_embed_dim: int = field( default=768, metadata={"help": "encoder embedding dimension"} ) encoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "encoder embedding dimension for FFN"} ) encoder_attention_heads: int = field( default=12, metadata={"help": "num encoder attention heads"} ) activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="gelu", metadata={"help": "activation function to use"} ) layer_type: LAYER_TYPE_CHOICES = field( default="transformer", metadata={"help": "layer type in encoder"} ) # dropouts dropout: float = field( default=0.1, metadata={"help": "dropout probability for the transformer"}, ) attention_dropout: float = field( default=0.1, metadata={"help": "dropout probability for attention weights"}, ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN"}, ) encoder_layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"}, ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) dropout_features: float = field( default=0.0, metadata={"help": "dropout to apply to the features (after feat extr)"}, ) final_dim: int = field( default=0, metadata={ "help": "project final representations and targets to this many " "dimensions. set to encoder_embed_dim is <= 0" }, ) untie_final_proj: bool = field( default=False, metadata={"help": "use separate projection for each target"}, ) layer_norm_first: bool = field( default=False, metadata={"help": "apply layernorm first in the transformer"}, ) conv_feature_layers: str = field( default="[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2", metadata={ "help": "string describing convolutional feature extraction " "layers in form of a python list that contains " "[(dim, kernel_size, stride), ...]" }, ) conv_bias: bool = field( default=False, metadata={"help": "include bias in conv encoder"} ) logit_temp: float = field( default=0.1, metadata={"help": "temperature to divide logits by"} ) target_glu: bool = field( default=False, metadata={"help": "adds projection + glu to targets"} ) feature_grad_mult: float = field( default=1.0, metadata={"help": "multiply feature extractor var grads by this"}, ) # masking mask_length: int = field(default=10, metadata={"help": "mask length"}) mask_prob: float = field( default=0.65, metadata={"help": "probability of replacing a token with mask"}, ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) mask_min_space: int = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"}, ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"}, ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"}, ) mask_channel_min_space: int = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) # positional embeddings conv_pos: int = field( default=128, metadata={"help": "number of filters for convolutional positional embeddings"}, ) conv_pos_groups: int = field( default=16, metadata={"help": "number of groups for convolutional positional embedding"}, ) latent_temp: Tuple[float, float, float] = field( default=(2, 0.5, 0.999995), metadata={"help": "legacy (to be removed)"}, ) # loss computation skip_masked: bool = field( default=False, metadata={"help": "skip computing losses over masked frames"}, ) skip_nomask: bool = field( default=False, metadata={"help": "skip computing losses over unmasked frames"}, ) checkpoint_activations: bool = field( default=False, metadata={"help": "recompute activations and save memory for extra compute"}, ) # FP16 optimization required_seq_len_multiple: int = field( default=2, metadata={ "help": "pad the input to encoder such that the sequence length is divisible by multiple" }, ) # Conformer depthwise_conv_kernel_size: int = field( default=31, metadata={ "help": "depthwise-conv-kernel-size for convolution in conformer layer" }, ) attn_type: str = field( default="", metadata={"help": "if espnet use ESPNET MHA"}, ) pos_enc_type: str = field( default="abs", metadata={"help": "Positional encoding type to use in conformer"}, ) fp16: bool = field(default=False, metadata={"help": "If fp16 is being used"}) @register_model("hubert", dataclass=HubertConfig) class HubertModel(BaseFairseqModel): def __init__( self, cfg: HubertConfig, task_cfg: HubertPretrainingConfig, dictionaries: List[Dictionary], ) -> None: super().__init__() logger.info(f"HubertModel Config: {cfg}") feature_enc_layers = eval(cfg.conv_feature_layers) # noqa self.embed = feature_enc_layers[-1][0] self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias, ) feature_ds_rate = np.prod([s for _, _, s in feature_enc_layers]) self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / task_cfg.sample_rate self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None ) self.mask_prob = cfg.mask_prob self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length = cfg.mask_length self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.logit_temp = cfg.logit_temp self.skip_masked = cfg.skip_masked self.skip_nomask = cfg.skip_nomask final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim self.mask_emb = nn.Parameter( torch.FloatTensor(cfg.encoder_embed_dim).uniform_() ) self.encoder = TransformerEncoder(cfg) self.layer_norm = LayerNorm(self.embed) self.target_glu = None if cfg.target_glu: self.target_glu = nn.Sequential( nn.Linear(final_dim, final_dim * 2), nn.GLU() ) self.untie_final_proj = cfg.untie_final_proj if self.untie_final_proj: self.final_proj = nn.Linear( cfg.encoder_embed_dim, final_dim * len(dictionaries) ) else: self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim) # modules below are not needed during fine-tuning if any([d is None for d in dictionaries]): logger.info("cannot find dictionary. assume will be used for fine-tuning") else: self.num_classes = [len(d) for d in dictionaries] self.label_embs_concat = nn.Parameter( torch.FloatTensor(sum(self.num_classes), final_dim) ) nn.init.uniform_(self.label_embs_concat) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: HubertConfig, task: HubertPretrainingTask): """Build a new model instance.""" model = HubertModel(cfg, task.cfg, task.dictionaries) return model def apply_mask(self, x, padding_mask, target_list): B, T, C = x.shape if self.mask_prob > 0: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def compute_nce(self, x, pos, negs): neg_is_pos = (pos == negs).all(-1) pos = pos.unsqueeze(0) targets = torch.cat([pos, negs], dim=0) logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1).type_as(x) logits /= self.logit_temp if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") logits = logits.transpose(0, 1) # (num_x, num_cls+1) return logits def forward_features(self, source: torch.Tensor) -> torch.Tensor: if self.feature_grad_mult > 0: features = self.feature_extractor(source) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): features = self.feature_extractor(source) return features def forward_targets( self, features: torch.Tensor, target_list: List[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Trim features to ensure labels exist and then get aligned labels feat_tsz = features.size(2) targ_tsz = min([t.size(1) for t in target_list]) if self.feat2tar_ratio * feat_tsz > targ_tsz: feat_tsz = int(targ_tsz / self.feat2tar_ratio) features = features[..., :feat_tsz] target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio target_list = [t[:, target_inds.long()] for t in target_list] return features, target_list def forward_padding_mask( self, features: torch.Tensor, padding_mask: torch.Tensor, ) -> torch.Tensor: extra = padding_mask.size(1) % features.size(1) if extra > 0: padding_mask = padding_mask[:, :-extra] padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1) padding_mask = padding_mask.all(-1) return padding_mask def forward( self, source: torch.Tensor, target_list: Optional[List[torch.Tensor]] = None, padding_mask: Optional[torch.Tensor] = None, mask: bool = True, features_only: bool = False, output_layer: Optional[int] = None, ) -> Dict[str, torch.Tensor]: """output layer is 1-based""" features = self.forward_features(source) if target_list is not None: features, target_list = self.forward_targets(features, target_list) features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) unmasked_features = features.clone() if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask) if self.post_extract_proj is not None: features = self.post_extract_proj(features) features = self.dropout_input(features) unmasked_features = self.dropout_features(unmasked_features) if mask: x, mask_indices = self.apply_mask(features, padding_mask, target_list) else: x = features mask_indices = None # feature: (B, T, D), float # target: (B, T), long # x: (B, T, D), float # padding_mask: (B, T), bool # mask_indices: (B, T), bool x, _ = self.encoder( x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1, ) if features_only: return {"x": x, "padding_mask": padding_mask, "features": features} def compute_pred(proj_x, target, label_embs): # compute logits for the i-th label set y = torch.index_select(label_embs, 0, target.long()) negs = label_embs.unsqueeze(1).expand(-1, proj_x.size(0), -1) if self.target_glu: y = self.target_glu(y) negs = self.target_glu(negs) # proj_x: (S, D) # y: (S, D) # negs: (Neg, S, D) return self.compute_nce(proj_x, y, negs) label_embs_list = self.label_embs_concat.split(self.num_classes, 0) if not self.skip_masked: masked_indices = torch.logical_and(~padding_mask, mask_indices) proj_x_m = self.final_proj(x[masked_indices]) if self.untie_final_proj: proj_x_m_list = proj_x_m.chunk(len(target_list), dim=-1) else: proj_x_m_list = [proj_x_m for _ in range(len(target_list))] logit_m_list = [ compute_pred(proj_x_m, t[masked_indices], label_embs_list[i]) for i, (proj_x_m, t) in enumerate(zip(proj_x_m_list, target_list)) ] else: logit_m_list = [None for _ in target_list] if not self.skip_nomask: nomask_indices = torch.logical_and(~padding_mask, ~mask_indices) proj_x_u = self.final_proj(x[nomask_indices]) if self.untie_final_proj: proj_x_u_list = proj_x_u.chunk(len(target_list), dim=-1) else: proj_x_u_list = [proj_x_u for _ in range(len(target_list))] logit_u_list = [ compute_pred(proj_x_u, t[nomask_indices], label_embs_list[i]) for i, (proj_x_u, t) in enumerate(zip(proj_x_u_list, target_list)) ] else: logit_u_list = [None for _ in target_list] result = { "logit_m_list": logit_m_list, "logit_u_list": logit_u_list, "padding_mask": padding_mask, "features_pen": features_pen, } return result def extract_features( self, source: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, mask: bool = False, ret_conv: bool = False, output_layer: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: res = self.forward( source, padding_mask=padding_mask, mask=mask, features_only=True, output_layer=output_layer, ) feature = res["features"] if ret_conv else res["x"] return feature, res["padding_mask"] def get_logits(self, net_output, is_masked=True): if is_masked: logits_list = net_output["logit_m_list"] else: logits_list = net_output["logit_u_list"] logits_list = [x.float() for x in logits_list if x is not None] return logits_list def get_targets(self, net_output, is_masked=True): logits_list = self.get_logits(net_output, is_masked) targets_list = [x.new_zeros(x.size(0), dtype=torch.long) for x in logits_list] return targets_list def get_extra_losses(self, net_output): extra_losses = [] names = [] if "features_pen" in net_output: extra_losses.append(net_output["features_pen"]) names.append("features_pen") return extra_losses, names def remove_pretraining_modules(self): self.target_glu = None self.final_proj = None