# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from collections import defaultdict from dataclasses import dataclass, field from typing import Dict, Any, List, Optional import torch.optim from fairseq.dataclass import FairseqDataclass from fairseq.optim import FairseqOptimizer, register_optimizer, _build_optimizer from fairseq.optim.lr_scheduler import FairseqLRScheduler, build_lr_scheduler from omegaconf import II, open_dict logger = logging.getLogger(__name__) @dataclass class OptimizerAndSchedulerConfig(FairseqDataclass): optimizer: Any = None lr_scheduler: Optional[Any] = None lr: List = II("optimization.lr") lr_float: Optional[ float ] = None # this makes it easier to sweep on learning rate with auto sweepers @dataclass class CompositeOptimizerConfig(FairseqDataclass): groups: Dict[str, Any] = field( default_factory=lambda: {}, metadata={ "help": "optimizer name -> optimizer OptimizerAndSchedulerConfig. " "Configures a different optimizer and (optionally) lr scheduler for each parameter group" }, ) @register_optimizer("composite", dataclass=CompositeOptimizerConfig) class FairseqCompositeOptimizer(FairseqOptimizer): optimizers: Dict[str, FairseqOptimizer] = {} lr_schedulers: Dict[str, FairseqLRScheduler] = {} lr_scheduler: FairseqLRScheduler = None _optimizer: torch.optim.Optimizer def __init__(self, cfg: CompositeOptimizerConfig, params): super().__init__(cfg) assert ( len(params) > 1 ), "Composite optimizer only works when there are multiple parameter groups (try fp16_no_flatten_grads: true)" groupped_params = defaultdict(list) for p in params: group = getattr(p, "param_group", "default") groupped_params[group].append(p) assert groupped_params.keys() == cfg.groups.keys(), ( f"Parameter groups {groupped_params.keys()} and optimizer groups {cfg.groups.keys()} are not the same! " "Try setting 'param_group' on your parameters in the model." ) for group, group_params in groupped_params.items(): group_cfg = cfg.groups[group] with open_dict(group_cfg): if group_cfg.lr_float is not None: group_cfg.optimizer.lr = [group_cfg.lr_float] group_cfg.lr_scheduler.lr = [group_cfg.lr_float] else: group_cfg.optimizer.lr = group_cfg.lr group_cfg.lr_scheduler.lr = group_cfg.lr self.optimizers[group] = _build_optimizer(group_cfg.optimizer, group_params) if group_cfg.lr_scheduler is not None: self.lr_schedulers[group] = build_lr_scheduler( group_cfg.lr_scheduler, self.optimizers[group] ) if len(self.lr_schedulers) > 0: assert len(self.lr_schedulers) == len(self.optimizers), ( f"Please provide an lr scheduler for each optimizer to use pass_through scheduler. " f"Optimizers: {self.optimizers}; Lr scheds: {self.lr_schedulers}" ) self.lr_scheduler = CompositeLRScheduler(self.lr_schedulers) self._optimizer = CompositeOptimizer(self.optimizers) @property def supports_groups(self): return True @property def param_groups(self): for opt in self.optimizers.values(): for group in opt.param_groups: yield group def get_lr(self): """Return the current learning rate.""" k = ( "default" if "default" in self.optimizers else next(iter(self.optimizers.keys())) ) return self.optimizers[k].param_groups[0]["lr"] def state_dict(self): """Return the LR scheduler state dict.""" return {k: s.state_dict() for k, s in self.optimizers.items()} def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an LR scheduler state dict.""" for k, state in state_dict.items(): if k not in self.optimizers: # skip extra keys like "loss_scale" added by fp16 optimizer continue overrides = ( optimizer_overrides[k] if isinstance(optimizer_overrides, dict) and k in optimizer_overrides else None ) self.optimizers[k].load_state_dict(state, optimizer_overrides=overrides) class CompositeOptimizer(torch.optim.Optimizer): def __init__(self, optimizers: Dict[str, FairseqOptimizer]): self.optimizers = optimizers @property def supports_memory_efficient_fp16(self): return all(o.supports_memory_efficient_fp16 for o in self.optimizers.values()) @property def supports_flat_params(self): return all(o.supports_flat_params for o in self.optimizers.values()) def step(self, closure=None, groups=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for k, opt in self.optimizers.items(): if groups is None or k in groups: opt.step() return loss def zero_grad(self): for opt in self.optimizers.values(): opt.zero_grad() class CompositeLRScheduler(FairseqLRScheduler): def __init__(self, lr_schedulers): super().__init__(None, None) self.lr_schedulers = lr_schedulers def state_dict(self): """Return the LR scheduler state dict.""" return {k: s.state_dict() for k, s in self.lr_schedulers.items()} def load_state_dict(self, state_dict): """Load an LR scheduler state dict.""" for k, state in state_dict.items(): self.lr_schedulers[k].load_state_dict(state) def step_begin_epoch(self, epoch): """Update the learning rate at the beginning of the given epoch.""" for s in self.lr_schedulers.values(): s.step_begin_epoch(epoch) def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" for s in self.lr_schedulers.values(): s.step(epoch) def step_update(self, num_updates): """Update the learning rate after each update.""" return {k: s.step_update(num_updates) for k, s in self.lr_schedulers.items()}