# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from dataclasses import dataclass, field import numpy as np from omegaconf import II, MISSING, OmegaConf from fairseq import utils from fairseq.data import ( Dictionary, IdDataset, MaskTokensDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, PrependTokenDataset, RightPadDataset, SortDataset, TokenBlockDataset, data_utils, ) from fairseq.data.encoders.utils import get_whole_word_mask from fairseq.data.shorten_dataset import maybe_shorten_dataset from fairseq.dataclass import FairseqDataclass from fairseq.tasks import FairseqTask, register_task from .language_modeling import SAMPLE_BREAK_MODE_CHOICES, SHORTEN_METHOD_CHOICES logger = logging.getLogger(__name__) @dataclass class MaskedLMConfig(FairseqDataclass): data: str = field( default=MISSING, metadata={ "help": "colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner" }, ) sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( default="none", metadata={ "help": 'If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.' }, ) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sample for LM dataset"}, ) mask_prob: float = field( default=0.15, metadata={"help": "probability of replacing a token with mask"}, ) leave_unmasked_prob: float = field( default=0.1, metadata={"help": "probability that a masked token is unmasked"}, ) random_token_prob: float = field( default=0.1, metadata={"help": "probability of replacing a token with a random token"}, ) freq_weighted_replacement: bool = field( default=False, metadata={"help": "sample random replacement words based on word frequencies"}, ) mask_whole_words: bool = field( default=False, metadata={"help": "mask whole words; you may also want to set --bpe"}, ) mask_multiple_length: int = field( default=1, metadata={"help": "repeat the mask indices multiple times"}, ) mask_stdev: float = field( default=0.0, metadata={"help": "stdev of the mask length"}, ) shorten_method: SHORTEN_METHOD_CHOICES = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed --tokens-per-sample" }, ) shorten_data_split_list: str = field( default="", metadata={ "help": "comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)' }, ) seed: int = II("common.seed") include_target_tokens: bool = field( default=False, metadata={ "help": "include target tokens in model input. this is used for data2vec" }, ) @register_task("masked_lm", dataclass=MaskedLMConfig) class MaskedLMTask(FairseqTask): cfg: MaskedLMConfig """Task for training masked language models (e.g., BERT, RoBERTa).""" def __init__(self, cfg: MaskedLMConfig, dictionary): super().__init__(cfg) self.dictionary = dictionary # add mask token self.mask_idx = dictionary.add_symbol("") @classmethod def setup_task(cls, cfg: MaskedLMConfig, **kwargs): paths = utils.split_paths(cfg.data) assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) logger.info("dictionary: {} types".format(len(dictionary))) return cls(cfg, dictionary) def _load_dataset_split(self, split, epoch, combine): paths = utils.split_paths(self.cfg.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, combine=combine, ) if dataset is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) dataset = maybe_shorten_dataset( dataset, split, self.cfg.shorten_data_split_list, self.cfg.shorten_method, self.cfg.tokens_per_sample, self.cfg.seed, ) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.cfg.tokens_per_sample - 1, # one less for pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode=self.cfg.sample_break_mode, ) logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) # prepend beginning-of-sentence token (, equiv. to [CLS] in BERT) return PrependTokenDataset(dataset, self.source_dictionary.bos()) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ dataset = self._load_dataset_split(split, epoch, combine) # create masked input and targets mask_whole_words = ( get_whole_word_mask(self.args, self.source_dictionary) if self.cfg.mask_whole_words else None ) src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( dataset, self.source_dictionary, pad_idx=self.source_dictionary.pad(), mask_idx=self.mask_idx, seed=self.cfg.seed, mask_prob=self.cfg.mask_prob, leave_unmasked_prob=self.cfg.leave_unmasked_prob, random_token_prob=self.cfg.random_token_prob, freq_weighted_replacement=self.cfg.freq_weighted_replacement, mask_whole_words=mask_whole_words, mask_multiple_length=self.cfg.mask_multiple_length, mask_stdev=self.cfg.mask_stdev, ) with data_utils.numpy_seed(self.cfg.seed): shuffle = np.random.permutation(len(src_dataset)) target_dataset = RightPadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), ) input_dict = { "src_tokens": RightPadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), ), "src_lengths": NumelDataset(src_dataset, reduce=False), } if self.cfg.include_target_tokens: input_dict["target_tokens"] = target_dataset self.datasets[split] = SortDataset( NestedDictionaryDataset( { "id": IdDataset(), "net_input": input_dict, "target": target_dataset, "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_dataset, reduce=True), }, sizes=[src_dataset.sizes], ), sort_order=[ shuffle, src_dataset.sizes, ], ) def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True): src_dataset = RightPadDataset( TokenBlockDataset( src_tokens, src_lengths, self.cfg.tokens_per_sample - 1, # one less for pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ), pad_idx=self.source_dictionary.pad(), ) src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos()) src_dataset = NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": src_dataset, "src_lengths": NumelDataset(src_dataset, reduce=False), }, }, sizes=src_lengths, ) if sort: src_dataset = SortDataset(src_dataset, sort_order=[src_lengths]) return src_dataset @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary