# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import logging import os import torch import json from argparse import Namespace from dataclasses import dataclass, field from typing import Optional, Any from fairseq.data import AddTargetDataset, Dictionary, encoders from fairseq.tasks.audio_pretraining import AudioPretrainingTask, AudioPretrainingConfig from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.configs import GenerationConfig from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel from . import register_task from .. import utils from ..logging import metrics logger = logging.getLogger(__name__) class LabelEncoder(object): def __init__(self, dictionary): self.dictionary = dictionary def __call__(self, label): return self.dictionary.encode_line( label, append_eos=False, add_if_not_exist=False ) def label_len_fn(label): return len(label.split(" ")) @dataclass class NLUFinetuningConfig(AudioPretrainingConfig): # Options for reporting WER metrics during validation. Only applicable to # Seq2Seq models during fine-tuning eval_wer: bool = field( default=False, metadata={"help": "compute WER for Seq2Seq models"} ) eval_wer_parse: bool = field( default=False, metadata={"help": "compute WER for Seq2Seq models"} ) eval_wer_config: GenerationConfig = field( default_factory=lambda: GenerationConfig(), metadata={"help": "beam search config for evaluating wer during training"}, ) eval_wer_tokenizer: Any = field( default=None, metadata={"help": "tokenizer config for evaluating wer during training"}, ) eval_wer_post_process: str = field( default="letter", metadata={ "help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)" }, ) eval_bleu: bool = field( default=False, metadata={"help": "evaluation with BLEU scores"} ) eval_bleu_detok: Optional[str] = field( default=None, metadata={ "help": "detokenize before computing BLEU (e.g., 'moses'); " "required if using --eval-bleu; use 'space' to disable " "detokenization; see fairseq.data.encoders for other options" }, ) eval_bleu_detok_args: str = field( default="{}", metadata={"help": "args for building the tokenizer, if needed"} ) eval_tokenized_bleu: bool = field( default=False, metadata={"help": "compute tokenized BLEU instead of sacrebleu"} ) eval_bleu_remove_bpe: Optional[str] = field( default=None, metadata={"help": "remove BPE before computing BLEU"} ) eval_bleu_args: str = field( default="{}", metadata={ "help": "generation args for BLUE scoring, e.g., " '\'{"beam": 4, "lenpen": 0.6}\'' }, ) eval_bleu_print_samples: bool = field( default=False, metadata={"help": "print sample generations during validation"} ) autoregressive: bool = field( default=False, metadata={ "help": "required for autoregressive decoders (like seq2seq models); " "adds 'prev_output_tokens' to input and appends eos to target" }, ) @register_task("nlu_finetuning", dataclass=NLUFinetuningConfig) class NLUFinetuningTask(AudioPretrainingTask): """ """ cfg: NLUFinetuningConfig def __init__( self, cfg: NLUFinetuningConfig, ): super().__init__(cfg) self.blank_symbol = "" self.state.add_factory("target_dictionary", self.load_target_dictionary) def load_target_dictionary(self): if self.cfg.labels: dict_path = os.path.join(self.cfg.data, f"dict.{self.cfg.labels}.txt") return Dictionary.load(dict_path) return None def load_dataset(self, split: str, task_cfg: NLUFinetuningConfig = None, **kwargs): super().load_dataset(split, task_cfg, **kwargs) task_cfg = task_cfg or self.cfg assert task_cfg.labels is not None text_compression_level = getattr( TextCompressionLevel, str(self.cfg.text_compression_level) ) data_path = self.cfg.data label_path = os.path.join(data_path, f"{split}.{task_cfg.labels}") skipped_indices = getattr(self.datasets[split], "skipped_indices", set()) text_compressor = TextCompressor(level=text_compression_level) with open(label_path, "r") as f: labels = [ text_compressor.compress(l) for i, l in enumerate(f) if i not in skipped_indices ] assert len(labels) == len(self.datasets[split]), ( f"labels length ({len(labels)}) and dataset length " f"({len(self.datasets[split])}) do not match" ) process_label = LabelEncoder(self.target_dictionary) self.datasets[split] = AddTargetDataset( self.datasets[split], labels, pad=self.target_dictionary.pad(), eos=self.target_dictionary.eos(), batch_targets=True, process_label=process_label, label_len_fn=label_len_fn, add_to_input=task_cfg.get("autoregressive", False), text_compression_level=text_compression_level, ) @property def target_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self.state.target_dictionary def valid_step(self, sample, model, criterion): loss, sample_size, logging_output = super().valid_step(sample, model, criterion) if self.cfg.eval_wer_parse and self.cfg.autoregressive: metrics = self._inference_with_wer_parse( self.sequence_generator, sample, model ) logging_output["_num_char_errors"] = metrics["num_char_errors"] logging_output["_num_chars"] = metrics["num_chars"] logging_output["_num_word_errors"] = metrics["num_word_errors"] logging_output["_num_words"] = metrics["num_words"] logging_output["_num_em_errors"] = metrics["num_em_errors"] logging_output["_num_ems"] = metrics["num_ems"] logging_output["_num_tree_errors"] = metrics["num_tree_errors"] logging_output["_num_trees"] = metrics["num_trees"] if self.cfg.eval_wer and self.cfg.autoregressive: metrics = self._inference_with_wer(self.sequence_generator, sample, model) logging_output["_num_char_errors"] = metrics["num_char_errors"] logging_output["_num_chars"] = metrics["num_chars"] logging_output["_num_word_errors"] = metrics["num_word_errors"] logging_output["_num_words"] = metrics["num_words"] if self.cfg.eval_bleu and self.cfg.autoregressive: metrics = self._inference_with_bleu(self.sequence_generator, sample, model) logging_output["_bleu_sys_len"] = metrics.sys_len logging_output["_bleu_ref_len"] = metrics.ref_len # we split counts into separate entries so that they can be # summed efficiently across workers using fast-stat-sync assert len(metrics.counts) == 4 for i in range(4): logging_output[f"_bleu_counts_{i}"] = metrics.counts[i] logging_output[f"_bleu_totals_{i}"] = metrics.totals[i] return loss, sample_size, logging_output def build_model(self, model_cfg: FairseqDataclass): model = super().build_model(model_cfg) if (self.cfg.eval_wer or self.cfg.eval_wer_parse) and self.cfg.autoregressive: self.sequence_generator = self.build_generator( [model], self.cfg.eval_wer_config, ) if self.cfg.eval_wer_tokenizer: self.tokenizer = encoders.build_tokenizer(self.cfg.eval_wer_tokenizer) else: self.tokenizer = None if self.cfg.eval_bleu and self.cfg.autoregressive: assert self.cfg.eval_bleu_detok is not None, ( "--eval-bleu-detok is required if using --eval-bleu; " "try --eval-bleu-detok=moses (or --eval-bleu-detok=space " "to disable detokenization, e.g., when using sentencepiece)" ) detok_args = json.loads(self.cfg.eval_bleu_detok_args) self.tokenizer = encoders.build_tokenizer( Namespace(tokenizer=self.cfg.eval_bleu_detok, **detok_args) ) gen_args = json.loads(self.cfg.eval_bleu_args) gen_args = Namespace(**gen_args) self.sequence_generator = self.build_generator([model], gen_args) return model def _inference_with_wer_parse(self, generator, sample, model): import editdistance def decode(toks): s = self.target_dictionary.string( toks.int().cpu(), self.cfg.eval_wer_post_process, escape_unk=True, ) if self.tokenizer: s = self.tokenizer.decode(s) return s def decode_to_list(toks): def token_string(i): if i == self.target_dictionary.unk(): return self.target_dictionary.unk_string(False) else: return self.target_dictionary[i] return [token_string(i) for i in toks] def is_ont_token(token): return "[" in token or "]" in token def post_process(l): o = [] for w in l: if w == self.target_dictionary.eos_word or w == "|": continue if w == "_": o.append(" ") else: o.append(w) if is_ont_token(w): o.append(" ") return o num_word_errors, num_char_errors = 0, 0 num_chars, num_words = 0, 0 num_em_errors, num_ems = 0, 0 num_tree_errors, num_trees = 0, 0 gen_out = self.inference_step(generator, [model], sample, None) for i in range(len(gen_out)): hyp_tokens = gen_out[i][0]["tokens"] # hyp = decode(hyp_tokens) ref_tokens = utils.strip_pad( sample["target"][i], self.target_dictionary.pad() ) # ref = decode(ref_tokens) hyp_list = decode_to_list(hyp_tokens) ref_list = decode_to_list(ref_tokens) hyp_list = post_process(hyp_list) ref_list = post_process(ref_list) hyp = "".join(hyp_list).strip() ref = "".join(ref_list).strip() num_chars += len(ref) num_char_errors += editdistance.eval(hyp, ref) hyp_words = hyp.split() ref_words = ref.split() hyp_tree = [word for word in hyp_list if ("[" in word or "]" in word)] ref_tree = [word for word in ref_list if ("[" in word or "]" in word)] # num_word_errors += editdistance.eval(hyp_words, ref_words) hyp_before = decode(hyp_tokens).split() ref_before = decode(ref_tokens).split() num_word_errors += editdistance.eval(hyp_before, ref_before) num_words += len(ref_before) if hyp != ref: num_em_errors += 1 if hyp_tree != ref_tree: num_tree_errors += 1 num_ems += 1 num_trees += 1 return { "num_char_errors": num_char_errors, "num_chars": num_chars, "num_word_errors": num_word_errors, "num_words": num_words, "num_ems": num_ems, "num_em_errors": num_em_errors, "num_trees": num_trees, "num_tree_errors": num_tree_errors, } def _inference_with_wer(self, generator, sample, model): import editdistance def decode(toks): s = self.target_dictionary.string( toks.int().cpu(), self.cfg.eval_wer_post_process, escape_unk=True, ) if self.tokenizer: s = self.tokenizer.decode(s) return s num_word_errors, num_char_errors = 0, 0 num_chars, num_words = 0, 0 gen_out = self.inference_step(generator, [model], sample, None) for i in range(len(gen_out)): hyp = decode(gen_out[i][0]["tokens"]) ref = decode( utils.strip_pad(sample["target"][i], self.target_dictionary.pad()), ) num_char_errors += editdistance.eval(hyp, ref) num_chars += len(ref) hyp_words = hyp.split() ref_words = ref.split() num_word_errors += editdistance.eval(hyp_words, ref_words) num_words += len(ref_words) return { "num_char_errors": num_char_errors, "num_chars": num_chars, "num_word_errors": num_word_errors, "num_words": num_words, } def _inference_with_bleu(self, generator, sample, model): import sacrebleu def decode(toks, is_ref): s = self.target_dictionary.string( toks.int().cpu(), self.cfg.eval_bleu_remove_bpe, # The default unknown string in fairseq is ``, but # this is tokenized by sacrebleu as `< unk >`, inflating # BLEU scores. Instead, we use a somewhat more verbose # alternative that is unlikely to appear in the real # reference, but doesn't get split into multiple tokens. unk_string=("UNKNOWNTOKENINREF" if is_ref else "UNKNOWNTOKENINHYP"), ) if self.tokenizer: s = self.tokenizer.decode(s) return s gen_out = self.inference_step(generator, [model], sample) hyps, refs = [], [] for i in range(len(gen_out)): hyps.append(decode(gen_out[i][0]["tokens"], is_ref=False)) refs.append( decode( utils.strip_pad(sample["target"][i], self.target_dictionary.pad()), is_ref=True, # don't count as matches to the hypo ) ) if self.cfg.eval_bleu_print_samples: logger.info("H-{} {}".format(sample["id"][0], hyps[0])) logger.info("T-{} {}".format(sample["id"][0], refs[0])) eval_tokenization = "none" if self.cfg.eval_tokenized_bleu else "13a" return sacrebleu.corpus_bleu(hyps, [refs], tokenize=eval_tokenization) def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) if self.cfg.eval_wer or self.cfg.eval_wer_parse: zero = torch.scalar_tensor(0.0) num_char_errors = sum( log.get("_num_char_errors", zero) for log in logging_outputs ) num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs) num_word_errors = sum( log.get("_num_word_errors", zero) for log in logging_outputs ) num_words = sum(log.get("_num_words", zero) for log in logging_outputs) metrics.log_scalar("_num_char_errors", num_char_errors) metrics.log_scalar("_num_chars", num_chars) metrics.log_scalar("_num_word_errors", num_word_errors) metrics.log_scalar("_num_words", num_words) if num_chars > 0: metrics.log_derived( "uer", lambda meters: meters["_num_char_errors"].sum * 100.0 / meters["_num_chars"].sum if meters["_num_chars"].sum > 0 else float("nan"), ) if num_words > 0: metrics.log_derived( "wer", lambda meters: meters["_num_word_errors"].sum * 100.0 / meters["_num_words"].sum if meters["_num_words"].sum > 0 else float("nan"), ) if self.cfg.eval_wer_parse: num_em_errors = sum( log.get("_num_em_errors", zero) for log in logging_outputs ) num_ems = sum(log.get("_num_ems", zero) for log in logging_outputs) metrics.log_scalar("_num_em_errors", num_em_errors) metrics.log_scalar("_num_ems", num_ems) num_tree_errors = sum( log.get("_num_tree_errors", zero) for log in logging_outputs ) num_trees = sum(log.get("_num_trees", zero) for log in logging_outputs) metrics.log_scalar("_num_tree_errors", num_tree_errors) metrics.log_scalar("_num_trees", num_trees) if num_ems > 0: metrics.log_derived( "em_error", lambda meters: meters["_num_em_errors"].sum * 100.0 / meters["_num_ems"].sum if meters["_num_ems"].sum > 0 else float("nan"), ) if num_trees > 0: metrics.log_derived( "tree_error", lambda meters: meters["_num_tree_errors"].sum * 100.0 / meters["_num_trees"].sum if meters["_num_trees"].sum > 0 else float("nan"), ) if self.cfg.eval_bleu: len_keys = ["_bleu_sys_len", "_bleu_ref_len"] count_keys = [f"_bleu_counts_{i}" for i in range(4)] total_keys = [f"_bleu_totals_{i}" for i in range(4)] for k in len_keys + count_keys + total_keys: metrics.log_scalar(k, sum(log.get(k, 0) for log in logging_outputs)) import sacrebleu metrics.log_derived( "bleu", lambda meters: sacrebleu.compute_bleu( correct=[meters[k].sum for k in count_keys], total=[meters[k].sum for k in total_keys], sys_len=meters["_bleu_sys_len"].sum, ref_len=meters["_bleu_ref_len"].sum, smooth_method="exp", ).score, )