# From https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI """ Copyright: RVC-Project License: MIT """ import gc import os import traceback import ffmpeg import numpy as np import torch.cuda import argparse import torch import io from multiprocessing import cpu_count from fairseq import checkpoint_utils from modules.voice_conversion.rvc.hubert.hubert_manager import HuBERTManager from modules.voice_conversion.rvc.vc_infer_pipeline import VC from modules.voice_conversion.rvc.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) hubert_model = None weight_root = os.path.join('') # ST HACK def config_file_change_fp32(): try: for config_file in ["32k.json", "40k.json", "48k.json"]: with open(f"configs/{config_file}", "r") as f: strr = f.read().replace("true", "false") with open(f"configs/{config_file}", "w") as f: f.write(strr) with open("trainset_preprocess_pipeline_print.py", "r") as f: strr = f.read().replace("3.7", "3.0") with open("trainset_preprocess_pipeline_print.py", "w") as f: f.write(strr) except Exception as e: print(f'exception in config_file_change_fp32: {e}') class Config: def __init__(self): self.device = "cuda:0" self.is_half = True self.n_cpu = 0 self.gpu_name = None self.gpu_mem = None self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() def device_config(self) -> tuple: if torch.cuda.is_available(): i_device = int(self.device.split(":")[-1]) self.gpu_name = torch.cuda.get_device_name(i_device) if ( ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) or "P40" in self.gpu_name.upper() or "1060" in self.gpu_name or "1070" in self.gpu_name or "1080" in self.gpu_name ): print("Forcing full precision for 16/10 series cards.") self.is_half = False config_file_change_fp32() else: self.gpu_name = None self.gpu_mem = int( torch.cuda.get_device_properties(i_device).total_memory / 1024 / 1024 / 1024 + 0.4 ) # if self.gpu_mem <= 4: # with open("trainset_preprocess_pipeline_print.py", "r") as f: # strr = f.read().replace("3.7", "3.0") # with open("trainset_preprocess_pipeline_print.py", "w") as f: # f.write(strr) elif torch.backends.mps.is_available(): print("No compatible GPU found, using MPS for inference.") self.device = "mps" self.is_half = False config_file_change_fp32() else: print("No compatible GPU found, using CPU for inference.") self.device = "cpu" self.is_half = False config_file_change_fp32() if self.n_cpu == 0: self.n_cpu = cpu_count() if self.is_half: # 6G显存配置 x_pad = 3 x_query = 10 x_center = 60 x_max = 65 else: # 5G显存配置 x_pad = 1 x_query = 6 x_center = 38 x_max = 41 if self.gpu_mem != None and self.gpu_mem <= 4: x_pad = 1 x_query = 5 x_center = 30 x_max = 32 return x_pad, x_query, x_center, x_max config = Config() def load_hubert(): global hubert_model if not hubert_model: models, _, _ = checkpoint_utils.load_model_ensemble_and_task( [HuBERTManager.make_sure_hubert_rvc_installed()], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() hubert_model.eval() def load_audio(audio_source, sr): try: if isinstance(audio_source, str): # If it's a file path audio_input = audio_source.strip(" ").strip('"').strip("\n").strip('"') out, _ = ( ffmpeg.input(audio_input, threads=0) .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) elif isinstance(audio_source, io.BytesIO): # If it's a BytesIO object audio_source.seek(0) out, _ = ( ffmpeg.input("pipe:0", threads=0) .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr) .run(input=audio_source.read(), cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) else: raise ValueError("Invalid audio source") except Exception as e: raise RuntimeError(f"Failed to load audio: {e}") return np.frombuffer(out, np.float32).flatten() vc = None rvc_model_name = None maximum = 0 def unload_rvc(): global vc, rvc_model_name rvc_model_name = None vc = None gc.collect() torch.cuda.empty_cache() def load_rvc(model): global vc, rvc_model_name, maximum if model != rvc_model_name: unload_rvc() rvc_model_name = model # correct for ST # Load rvc maximum = get_vc(model)['maximum'] return maximum def vc_single( sid, input_audio_path, f0_up_key, f0_file, f0_method, file_index, file_index2, # file_big_npy, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, crepe_hop_length=128 ): # spk_item, input_audio0, vc_transform0,f0_file,f0method0 global tgt_sr, net_g, vc, hubert_model, version if input_audio_path is None: return "You need to upload an audio", None f0_up_key = int(f0_up_key) try: audio = load_audio(input_audio_path, 16000) audio_max = np.abs(audio).max() / 0.95 if audio_max > 1: audio /= audio_max times = [0, 0, 0] if hubert_model is None: load_hubert() if_f0 = cpt.get("f0", 1) file_index = ( ( file_index.strip(" ") .strip('"') .strip("\n") .strip('"') .strip(" ") .replace("trained", "added") ) if file_index != "" else file_index2 ) # 防止小白写错,自动帮他替换掉 # file_big_npy = ( # file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ") # ) audio_opt = vc.pipeline( hubert_model, net_g, sid, audio, input_audio_path, times, f0_up_key, f0_method, file_index, # file_big_npy, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, f0_file=f0_file, crepe_hop_length=crepe_hop_length ) if resample_sr >= 16000 and tgt_sr != resample_sr: tgt_sr = resample_sr index_info = ( "Using index:%s." % file_index if os.path.exists(file_index) else "Index not used." ) return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % ( index_info, times[0], times[1], times[2], ), (tgt_sr, audio_opt) except: info = traceback.format_exc() print(info) return info, (None, None) # 一个选项卡全局只能有一个音色 def get_vc(sid): global n_spk, tgt_sr, net_g, vc, cpt, version if sid == "" or sid == []: global hubert_model if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 print("clean_empty_cache") del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None if torch.cuda.is_available(): torch.cuda.empty_cache() ###楼下不这么折腾清理不干净 if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid( *cpt["config"], is_half=config.is_half ) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del net_g, cpt if torch.cuda.is_available(): torch.cuda.empty_cache() cpt = None return {"visible": False, "__type__": "update"} #person = "%s/%s" % (weight_root, sid) # ST HACK person = sid print("loading %s" % person) cpt = torch.load(person, map_location="cpu") tgt_sr = cpt["config"][-1] cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del net_g.enc_q print(net_g.load_state_dict(cpt["weight"], strict=False)) net_g.eval().to(config.device) if config.is_half: net_g = net_g.half() else: net_g = net_g.float() vc = VC(tgt_sr, config) n_spk = cpt["config"][-3] return {"visible": True, "maximum": n_spk, "__type__": "update"} def change_info(path, info, name): try: ckpt = torch.load(path, map_location="cpu") ckpt["info"] = info if name == "": name = os.path.basename(path) torch.save(ckpt, "weights/%s" % name) return "Success." except: return traceback.format_exc() def change_info_(ckpt_path): if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")): return try: with open( ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" ) as f: info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) sr, f0 = info["sample_rate"], info["if_f0"] version = "v2" if ("version" in info and info["version"] == "v2") else "v1" return sr, str(f0), version except: traceback.print_exc()