Spaces:
Runtime error
Runtime error
import os | |
from io import BytesIO | |
import pandas as pd | |
from dotenv import load_dotenv | |
load_dotenv() | |
import openai | |
import streamlit as st | |
# # set OPENAI_API_KEY environment variable from .streamlit/secrets.toml file | |
openai.api_key = st.secrets["OPENAI_API_KEY"] | |
# # set OPENAI_API_KEY environment variable from .env file | |
# openai.api_key = os.getenv("OPENAI_API_KEY") | |
# # read in llm-data-cleaner/prompts/gpt4-system-message.txt file into variable system_message | |
# system_message = open('../prompts/gpt4-system-message.txt', 'r').read() | |
class OpenAIChatCompletions: | |
def __init__(self, model="gpt-4", system_message=None): | |
self.model = model | |
self.system_message = system_message | |
# function to input args such as model, prompt, etc. and return completion | |
def openai_chat_completion(self, prompt, n_shot=None): | |
messages = [{"role": "system", "content": self.system_message}] if self.system_message else [] | |
# add n_shot number of samples to messages list ... if n_shot is None, then only system_message and prompt will be added to messages list | |
if n_shot is not None: | |
messages = self._add_samples(messages, n_samples=n_shot) | |
messages.append({"role": "user", "content": prompt}) | |
# set up the API request parameters for OpenAI | |
chat_request_kwargs = dict( | |
model=self.model, | |
messages=messages, | |
) | |
# make the API request to OpenAI | |
response = openai.ChatCompletion.create(**chat_request_kwargs) | |
# return only the completion text | |
# return response['choices'][0]['message']['content'] | |
# return response | |
return response | |
# function to use test data to predict completions | |
def predict_jsonl( | |
self, | |
path_or_buf='../data/cookies_train.jsonl', | |
# path_or_buf='~/data/cookies_train.jsonl', | |
n_samples=None, | |
n_shot=None | |
): | |
jsonObj = pd.read_json(path_or_buf=path_or_buf, lines=True) | |
if n_samples is not None: | |
jsonObj = jsonObj.sample(n_samples, random_state=42) | |
iter_range = range(len(jsonObj)) | |
prompts = [jsonObj.iloc[i]['prompt'] for i in iter_range] | |
completions = [jsonObj.iloc[i]['completion'] for i in iter_range] | |
predictions = [self.openai_chat_completion(prompt, n_shot=n_shot) for prompt in prompts] | |
return prompts, completions, predictions | |
# a method that adds prompt and completion samples to messages | |
def _add_samples(messages, n_samples=None): | |
if n_samples is None: | |
return messages | |
samples = OpenAIChatCompletions._sample_jsonl(n_samples=n_samples) | |
for i in range(n_samples): | |
messages.append({"role": "user", "content": samples.iloc[i]['prompt']}) | |
messages.append({"role": "assistant", "content": samples.iloc[i]['completion']}) | |
return messages | |
# a method that samples n rows from a jsonl file, returning a pandas dataframe | |
def _sample_jsonl( | |
path_or_buf='data/cookies_train.jsonl', | |
# path_or_buf='~/data/cookies_train.jsonl', | |
n_samples=5 | |
): | |
# jsonObj = pd.read_json(path_or_buf=path_or_buf, lines=True) | |
# if running locally, True | |
# else running on HF Spaces, False | |
if "Kaleidoscope Data" in os.getcwd(): | |
# file_path = os.path.join(os.getcwd(), "..", path_or_buf) | |
file_path = os.path.join("/".join(os.getcwd().split('/')[:-1]), path_or_buf) | |
else: | |
file_path = os.path.join(os.getcwd(), path_or_buf) | |
try: | |
with open(file_path, "r") as file: | |
jsonl_str = file.read() | |
jsonObj = pd.read_json(BytesIO(jsonl_str.encode()), lines=True, engine="pyarrow") | |
except FileNotFoundError: | |
# Handle the case where the file is not found | |
# Display an error message or take appropriate action | |
st.write(f"File not found: {file_path}") | |
return jsonObj.sample(n_samples, random_state=42) | |