Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- app/__pycache__/util.cpython-310.pyc +0 -0
- app/app.py +16 -5
- app/output_format.ipynb +393 -0
- app/util.py +43 -7
- prompts/gpt4-system-message2.txt +7 -1
app/__pycache__/util.cpython-310.pyc
ADDED
Binary file (2.16 kB). View file
|
|
app/app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
-
|
2 |
|
3 |
import streamlit as st
|
4 |
from openai_chat_completion import OpenAIChatCompletions
|
5 |
from dataclean_hf import main
|
|
|
6 |
|
7 |
st.title("Kaleidoscope Data - Data Cleaning LLM App")
|
8 |
|
@@ -18,17 +19,19 @@ if st.button("Run Data Cleaning API"):
|
|
18 |
# if text_input is not empty, run data cleaning API on text_input
|
19 |
if text_input:
|
20 |
|
21 |
-
|
22 |
-
sys_mes =
|
23 |
|
24 |
# instantiate OpenAIChatCompletions class
|
25 |
# get response from openai_chat_completion method
|
26 |
-
chat = OpenAIChatCompletions(model=
|
27 |
response = chat.openai_chat_completion(text_input, n_shot=None)
|
28 |
|
29 |
|
30 |
# display response
|
31 |
-
st.write(response['choices'][0]['message']['content'])
|
|
|
|
|
32 |
|
33 |
# if csv_file is not empty, run data cleaning API on csv_file
|
34 |
elif csv_file:
|
@@ -38,6 +41,14 @@ if st.button("Run Data Cleaning API"):
|
|
38 |
|
39 |
@st.cache_data
|
40 |
def convert_df(df):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
42 |
return df.to_csv().encode('utf-8')
|
43 |
|
|
|
1 |
+
""" this app is streamlit app for the current project hosted on HuggingFace spaces """
|
2 |
|
3 |
import streamlit as st
|
4 |
from openai_chat_completion import OpenAIChatCompletions
|
5 |
from dataclean_hf import main
|
6 |
+
from util import json_to_dict #, join_dicts
|
7 |
|
8 |
st.title("Kaleidoscope Data - Data Cleaning LLM App")
|
9 |
|
|
|
19 |
# if text_input is not empty, run data cleaning API on text_input
|
20 |
if text_input:
|
21 |
|
22 |
+
MODEL = "gpt-4" # "gpt-3.5-turbo"
|
23 |
+
sys_mes = open('../prompts/gpt4-system-message2.txt', 'r').read()
|
24 |
|
25 |
# instantiate OpenAIChatCompletions class
|
26 |
# get response from openai_chat_completion method
|
27 |
+
chat = OpenAIChatCompletions(model=MODEL, system_message=sys_mes)
|
28 |
response = chat.openai_chat_completion(text_input, n_shot=None)
|
29 |
|
30 |
|
31 |
# display response
|
32 |
+
# st.write(response['choices'][0]['message']['content'])
|
33 |
+
response_content = response['choices'][0]['message']['content']
|
34 |
+
st.write(json_to_dict(response_content))
|
35 |
|
36 |
# if csv_file is not empty, run data cleaning API on csv_file
|
37 |
elif csv_file:
|
|
|
41 |
|
42 |
@st.cache_data
|
43 |
def convert_df(df):
|
44 |
+
"""coverting dataframe to csv
|
45 |
+
|
46 |
+
Args:
|
47 |
+
df (_type_): pd.DataFrame
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
_type_: csv
|
51 |
+
"""
|
52 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
53 |
return df.to_csv().encode('utf-8')
|
54 |
|
app/output_format.ipynb
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# import OpenAIChatCompletions class from openai_chat_completion.py file and compare_completion_and_prediction function from util.py file\n",
|
10 |
+
"from openai_chat_completion import OpenAIChatCompletions"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": 4,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"import os\n",
|
20 |
+
"from dotenv import load_dotenv\n",
|
21 |
+
"load_dotenv()\n",
|
22 |
+
"\n",
|
23 |
+
"import openai\n",
|
24 |
+
"\n",
|
25 |
+
"# set OPENAI_API_KEY environment variable from .env file\n",
|
26 |
+
"openai.api_key = os.getenv(\"OPENAI_API_KEY\")"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": 5,
|
32 |
+
"metadata": {},
|
33 |
+
"outputs": [
|
34 |
+
{
|
35 |
+
"data": {
|
36 |
+
"text/plain": [
|
37 |
+
"'I am going to provide marijuana product information. Using the information I provide, I want you to provide me with the following information about the product.\\n\\n - Brand (brand)\\n - product category (product_category)\\n - sub product category (sub_product_category)\\n - strain name (strain_name)\\n\\nAdditional requirements:\\n\\n- DO NOT EXPLAIN YOUR SELF \\n\\nProduct data below '"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
"execution_count": 5,
|
41 |
+
"metadata": {},
|
42 |
+
"output_type": "execute_result"
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"source": [
|
46 |
+
"system_message = open('../prompts/gpt4-system-message.txt', 'r').read()\n",
|
47 |
+
"system_message"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 6,
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [
|
55 |
+
{
|
56 |
+
"name": "stdout",
|
57 |
+
"output_type": "stream",
|
58 |
+
"text": [
|
59 |
+
"I am going to provide marijuana product information. Using the information I provide, I want you to provide me with the following information about the product.\n",
|
60 |
+
"\n",
|
61 |
+
" - Brand (brand)\n",
|
62 |
+
" - product category (product_category)\n",
|
63 |
+
" - sub product category (sub_product_category)\n",
|
64 |
+
" - strain name (strain_name)\n",
|
65 |
+
"\n",
|
66 |
+
"Additional requirements:\n",
|
67 |
+
"\n",
|
68 |
+
"- DO NOT EXPLAIN YOUR SELF \n",
|
69 |
+
"\n",
|
70 |
+
"Product data below \n"
|
71 |
+
]
|
72 |
+
}
|
73 |
+
],
|
74 |
+
"source": [
|
75 |
+
"print(system_message)"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 7,
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"chatInstance = OpenAIChatCompletions(system_message=system_message)\n",
|
85 |
+
"chat_response = chatInstance.openai_chat_completion(prompt=\"Cookies - London Pound Cake 75 - Gummy - 10ct - 100mg\")"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 8,
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [
|
93 |
+
{
|
94 |
+
"name": "stdout",
|
95 |
+
"output_type": "stream",
|
96 |
+
"text": [
|
97 |
+
"- Brand: Cookies\n",
|
98 |
+
"- Product Category: Edibles\n",
|
99 |
+
"- Sub Product Category: Gummy\n",
|
100 |
+
"- Strain Name: London Pound Cake 75\n"
|
101 |
+
]
|
102 |
+
}
|
103 |
+
],
|
104 |
+
"source": [
|
105 |
+
"print(chat_response['choices'][0]['message']['content'])"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": 9,
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"system_message2 = \"\"\"\n",
|
115 |
+
"I am going to provide marijuana product information. Using the information I provide, I want you to provide me with the following information about the product.\n",
|
116 |
+
"\n",
|
117 |
+
" - Brand (brand)\n",
|
118 |
+
" - product category (product_category)\n",
|
119 |
+
" - sub product category (sub_product_category)\n",
|
120 |
+
" - strain name (strain_name)\n",
|
121 |
+
"\n",
|
122 |
+
"Additional requirements:\n",
|
123 |
+
"\n",
|
124 |
+
"DO NOT EXPLAIN YOUR SELF \n",
|
125 |
+
"Format output in JSON format\n",
|
126 |
+
"\n",
|
127 |
+
"example output:\n",
|
128 |
+
"{\"col1\": \"value1\", \"col2\": \"value2\", \"col3\": \"value3\"}\n",
|
129 |
+
"\n",
|
130 |
+
"---\n",
|
131 |
+
"\n",
|
132 |
+
"Product data below \n",
|
133 |
+
"\"\"\""
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 10,
|
139 |
+
"metadata": {},
|
140 |
+
"outputs": [
|
141 |
+
{
|
142 |
+
"name": "stdout",
|
143 |
+
"output_type": "stream",
|
144 |
+
"text": [
|
145 |
+
"{\"brand\": \"Cookies\", \"product_category\": \"Edibles\", \"sub_product_category\": \"Gummy\", \"strain_name\": \"London Pound Cake 75\"}\n"
|
146 |
+
]
|
147 |
+
}
|
148 |
+
],
|
149 |
+
"source": [
|
150 |
+
"chatInstance2 = OpenAIChatCompletions(system_message=system_message2)\n",
|
151 |
+
"chat_response2 = chatInstance2.openai_chat_completion(prompt=\"Cookies - London Pound Cake 75 - Gummy - 10ct - 100mg\")\n",
|
152 |
+
"print(chat_response2['choices'][0]['message']['content'])"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": 11,
|
158 |
+
"metadata": {},
|
159 |
+
"outputs": [],
|
160 |
+
"source": [
|
161 |
+
"chat_response2_content = chat_response2['choices'][0]['message']['content']"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": 12,
|
167 |
+
"metadata": {},
|
168 |
+
"outputs": [
|
169 |
+
{
|
170 |
+
"data": {
|
171 |
+
"text/plain": [
|
172 |
+
"{'brand': 'Cookies',\n",
|
173 |
+
" 'product_category': 'Edibles',\n",
|
174 |
+
" 'sub_product_category': 'Gummy',\n",
|
175 |
+
" 'strain_name': 'LondonPoundCake75'}"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
"execution_count": 12,
|
179 |
+
"metadata": {},
|
180 |
+
"output_type": "execute_result"
|
181 |
+
}
|
182 |
+
],
|
183 |
+
"source": [
|
184 |
+
"# write function that takes string in the form of json and returns a dictionary\n",
|
185 |
+
"\n",
|
186 |
+
"def json_to_dict(json_string):\n",
|
187 |
+
" json_string = json_string.replace('\\n', '')\n",
|
188 |
+
" json_string = json_string.replace('\\t', '')\n",
|
189 |
+
" json_string = json_string.replace(' ', '')\n",
|
190 |
+
" json_string = json_string.replace('\"', '')\n",
|
191 |
+
" json_string = json_string.replace('{', '')\n",
|
192 |
+
" json_string = json_string.replace('}', '')\n",
|
193 |
+
" json_string = json_string.replace(':', ',')\n",
|
194 |
+
" json_string = json_string.split(',')\n",
|
195 |
+
" return {\n",
|
196 |
+
" json_string[i]: json_string[i + 1]\n",
|
197 |
+
" for i in range(0, len(json_string), 2)\n",
|
198 |
+
" }\n",
|
199 |
+
"\n",
|
200 |
+
"output_as_json = json_to_dict(chat_response2_content)\n",
|
201 |
+
"assert type(output_as_json) == dict\n",
|
202 |
+
"output_as_json"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": 13,
|
208 |
+
"metadata": {},
|
209 |
+
"outputs": [
|
210 |
+
{
|
211 |
+
"data": {
|
212 |
+
"text/html": [
|
213 |
+
"<div>\n",
|
214 |
+
"<style scoped>\n",
|
215 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
216 |
+
" vertical-align: middle;\n",
|
217 |
+
" }\n",
|
218 |
+
"\n",
|
219 |
+
" .dataframe tbody tr th {\n",
|
220 |
+
" vertical-align: top;\n",
|
221 |
+
" }\n",
|
222 |
+
"\n",
|
223 |
+
" .dataframe thead th {\n",
|
224 |
+
" text-align: right;\n",
|
225 |
+
" }\n",
|
226 |
+
"</style>\n",
|
227 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
228 |
+
" <thead>\n",
|
229 |
+
" <tr style=\"text-align: right;\">\n",
|
230 |
+
" <th></th>\n",
|
231 |
+
" <th>brand</th>\n",
|
232 |
+
" <th>product_category</th>\n",
|
233 |
+
" <th>sub_product_category</th>\n",
|
234 |
+
" <th>strain_name</th>\n",
|
235 |
+
" </tr>\n",
|
236 |
+
" </thead>\n",
|
237 |
+
" <tbody>\n",
|
238 |
+
" <tr>\n",
|
239 |
+
" <th>0</th>\n",
|
240 |
+
" <td>Cookies</td>\n",
|
241 |
+
" <td>Edibles</td>\n",
|
242 |
+
" <td>Gummy</td>\n",
|
243 |
+
" <td>LondonPoundCake75</td>\n",
|
244 |
+
" </tr>\n",
|
245 |
+
" </tbody>\n",
|
246 |
+
"</table>\n",
|
247 |
+
"</div>"
|
248 |
+
],
|
249 |
+
"text/plain": [
|
250 |
+
" brand product_category sub_product_category strain_name\n",
|
251 |
+
"0 Cookies Edibles Gummy LondonPoundCake75"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
"execution_count": 13,
|
255 |
+
"metadata": {},
|
256 |
+
"output_type": "execute_result"
|
257 |
+
}
|
258 |
+
],
|
259 |
+
"source": [
|
260 |
+
"# write a function that takes a dictionary and returns a dataframe\n",
|
261 |
+
"import pandas as pd\n",
|
262 |
+
"\n",
|
263 |
+
"def dict_to_df(dictionary):\n",
|
264 |
+
" return pd.DataFrame(dictionary, index=[0])\n",
|
265 |
+
"\n",
|
266 |
+
"dict_to_df(output_as_json)"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "code",
|
271 |
+
"execution_count": 14,
|
272 |
+
"metadata": {},
|
273 |
+
"outputs": [
|
274 |
+
{
|
275 |
+
"name": "stdout",
|
276 |
+
"output_type": "stream",
|
277 |
+
"text": [
|
278 |
+
"{\"brand\": \"Cookies\", \"product_category\": \"Edibles\", \"sub_product_category\": \"Gummy\", \"strain_name\": \"London Pound Cake 75\"}\n",
|
279 |
+
"{\"brand\": \"Berlin\", \"product_category\": \"Edibles\", \"sub_product_category\": \"Brownies\", \"strain_name\": \"Chocolate Hazelnut 69\"}\n"
|
280 |
+
]
|
281 |
+
}
|
282 |
+
],
|
283 |
+
"source": [
|
284 |
+
"chat_response2a = chatInstance2.openai_chat_completion(prompt=\"Cookies - London Pound Cake 75 - Gummy - 10ct - 100mg\")\n",
|
285 |
+
"chat_response2b = chatInstance2.openai_chat_completion(prompt=\"Brownies - Berlin Chocolate Hazelnut 69 - Flower - 1ct - 69mg\")\n",
|
286 |
+
"print(chat_response2a['choices'][0]['message']['content'])\n",
|
287 |
+
"print(chat_response2b['choices'][0]['message']['content'])"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"cell_type": "code",
|
292 |
+
"execution_count": 15,
|
293 |
+
"metadata": {},
|
294 |
+
"outputs": [],
|
295 |
+
"source": [
|
296 |
+
"def join_dicts(dict1, dict2):\n",
|
297 |
+
" return {key:[dict1[key], dict2[key]] for key in dict1}"
|
298 |
+
]
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"cell_type": "code",
|
302 |
+
"execution_count": 16,
|
303 |
+
"metadata": {},
|
304 |
+
"outputs": [
|
305 |
+
{
|
306 |
+
"data": {
|
307 |
+
"text/plain": [
|
308 |
+
"{'brand': ['Cookies', 'Berlin'],\n",
|
309 |
+
" 'product_category': ['Edibles', 'Edibles'],\n",
|
310 |
+
" 'sub_product_category': ['Gummy', 'Brownies'],\n",
|
311 |
+
" 'strain_name': ['LondonPoundCake75', 'ChocolateHazelnut69']}"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
"execution_count": 16,
|
315 |
+
"metadata": {},
|
316 |
+
"output_type": "execute_result"
|
317 |
+
}
|
318 |
+
],
|
319 |
+
"source": [
|
320 |
+
"out2a_as_json = json_to_dict(chat_response2a['choices'][0]['message']['content'])\n",
|
321 |
+
"out2b_as_json = json_to_dict(chat_response2b['choices'][0]['message']['content'])\n",
|
322 |
+
"\n",
|
323 |
+
"out3_as_json = join_dicts(out2a_as_json, out2b_as_json)\n",
|
324 |
+
"out3_as_json"
|
325 |
+
]
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"cell_type": "markdown",
|
329 |
+
"metadata": {},
|
330 |
+
"source": [
|
331 |
+
"Try via util.py File"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"cell_type": "code",
|
336 |
+
"execution_count": 18,
|
337 |
+
"metadata": {},
|
338 |
+
"outputs": [],
|
339 |
+
"source": [
|
340 |
+
"from util import json_to_dict, join_dicts"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": 19,
|
346 |
+
"metadata": {},
|
347 |
+
"outputs": [
|
348 |
+
{
|
349 |
+
"data": {
|
350 |
+
"text/plain": [
|
351 |
+
"{'brand': ['Cookies', 'Berlin'],\n",
|
352 |
+
" 'product_category': ['Edibles', 'Edibles'],\n",
|
353 |
+
" 'sub_product_category': ['Gummy', 'Brownies'],\n",
|
354 |
+
" 'strain_name': ['LondonPoundCake75', 'ChocolateHazelnut69']}"
|
355 |
+
]
|
356 |
+
},
|
357 |
+
"execution_count": 19,
|
358 |
+
"metadata": {},
|
359 |
+
"output_type": "execute_result"
|
360 |
+
}
|
361 |
+
],
|
362 |
+
"source": [
|
363 |
+
"out2a_as_json = json_to_dict(chat_response2a['choices'][0]['message']['content'])\n",
|
364 |
+
"out2b_as_json = json_to_dict(chat_response2b['choices'][0]['message']['content'])\n",
|
365 |
+
"\n",
|
366 |
+
"out3_as_json = join_dicts(out2a_as_json, out2b_as_json)\n",
|
367 |
+
"out3_as_json"
|
368 |
+
]
|
369 |
+
}
|
370 |
+
],
|
371 |
+
"metadata": {
|
372 |
+
"kernelspec": {
|
373 |
+
"display_name": "kd-llm-dc",
|
374 |
+
"language": "python",
|
375 |
+
"name": "python3"
|
376 |
+
},
|
377 |
+
"language_info": {
|
378 |
+
"codemirror_mode": {
|
379 |
+
"name": "ipython",
|
380 |
+
"version": 3
|
381 |
+
},
|
382 |
+
"file_extension": ".py",
|
383 |
+
"mimetype": "text/x-python",
|
384 |
+
"name": "python",
|
385 |
+
"nbconvert_exporter": "python",
|
386 |
+
"pygments_lexer": "ipython3",
|
387 |
+
"version": "3.10.11"
|
388 |
+
},
|
389 |
+
"orig_nbformat": 4
|
390 |
+
},
|
391 |
+
"nbformat": 4,
|
392 |
+
"nbformat_minor": 2
|
393 |
+
}
|
app/util.py
CHANGED
@@ -1,5 +1,17 @@
|
|
1 |
-
# write a function that compares the completion and prediction, separating each string by comma into their respective columns, then compare each column and return a dataframe with the results
|
2 |
def compare_completion_and_prediction(completion, prediction, verbose=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
# if verbose is True, print the completion and prediction strings
|
4 |
if verbose:
|
5 |
print("Completion:", completion, f"type({type(completion)}):")
|
@@ -7,14 +19,38 @@ def compare_completion_and_prediction(completion, prediction, verbose=False):
|
|
7 |
# split completion and prediction strings on comma character
|
8 |
completion = completion.split(',')
|
9 |
prediction = prediction.split(',')
|
10 |
-
# create a column that counts the number of
|
11 |
matches = [completion[i] == prediction[i] for i in range(len(completion))]
|
12 |
-
|
13 |
-
json_dict = {
|
14 |
"completion": completion,
|
15 |
"prediction": prediction,
|
16 |
"matches": matches,
|
17 |
-
"num_correct": sum(matches)
|
18 |
}
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def compare_completion_and_prediction(completion, prediction, verbose=False):
|
2 |
+
"""
|
3 |
+
a function that compares the completion and prediction
|
4 |
+
separating each string by comma into their respective columns,
|
5 |
+
then compare each column and return a DataFrame with the results
|
6 |
+
|
7 |
+
Args:
|
8 |
+
completion (_type_): str
|
9 |
+
prediction (_type_): str
|
10 |
+
verbose (bool, optional): bool. Defaults to False.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
_type_: json object with completion, prediction, matches, and num_correct
|
14 |
+
"""
|
15 |
# if verbose is True, print the completion and prediction strings
|
16 |
if verbose:
|
17 |
print("Completion:", completion, f"type({type(completion)}):")
|
|
|
19 |
# split completion and prediction strings on comma character
|
20 |
completion = completion.split(',')
|
21 |
prediction = prediction.split(',')
|
22 |
+
# create a column that counts the number of matches between completion and prediction
|
23 |
matches = [completion[i] == prediction[i] for i in range(len(completion))]
|
24 |
+
return {
|
|
|
25 |
"completion": completion,
|
26 |
"prediction": prediction,
|
27 |
"matches": matches,
|
28 |
+
"num_correct": sum(matches),
|
29 |
}
|
30 |
+
|
31 |
+
def json_to_dict(json_string):
|
32 |
+
"""function that takes string in the form of json and returns a dictionary"""
|
33 |
+
json_string = json_string.replace('\n', '')
|
34 |
+
json_string = json_string.replace('\t', '')
|
35 |
+
json_string = json_string.replace(' ', '')
|
36 |
+
json_string = json_string.replace('"', '')
|
37 |
+
json_string = json_string.replace('{', '')
|
38 |
+
json_string = json_string.replace('}', '')
|
39 |
+
json_string = json_string.replace(':', ',')
|
40 |
+
json_string = json_string.split(',')
|
41 |
+
return {
|
42 |
+
json_string[i]: json_string[i + 1]
|
43 |
+
for i in range(0, len(json_string), 2)
|
44 |
+
}
|
45 |
+
|
46 |
+
def join_dicts(dict1, dict2):
|
47 |
+
"""function that joins two dictionaries into one dictionary
|
48 |
+
|
49 |
+
Args:
|
50 |
+
dict1 (_type_): dict
|
51 |
+
dict2 (_type_): dict
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
_type_: dict
|
55 |
+
"""
|
56 |
+
return {key:[dict1[key], dict2[key]] for key in dict1}
|
prompts/gpt4-system-message2.txt
CHANGED
@@ -7,6 +7,12 @@ I am going to provide marijuana product information. Using the information I pro
|
|
7 |
|
8 |
Additional requirements:
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
Product data below
|
|
|
7 |
|
8 |
Additional requirements:
|
9 |
|
10 |
+
DO NOT EXPLAIN YOUR SELF
|
11 |
+
Format output in JSON format
|
12 |
+
|
13 |
+
example output:
|
14 |
+
{"col1": "value1", "col2": "value2", "col3": "value3"}
|
15 |
+
|
16 |
+
---
|
17 |
|
18 |
Product data below
|