kamau1's picture
Update modules/app.py
5ecc89c verified
raw
history blame
6.3 kB
'''
Created By Lewis Kamau Kimaru
Sema translator api backend
January 2024
Docker deployment
'''
from fastapi import FastAPI, HTTPException, Request
from fastapi_middleware import Middleware
from fastapi_middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
import gradio as gr
import ctranslate2
import sentencepiece as spm
import fasttext
import uvicorn
import pytz
from datetime import datetime
import os
app = FastAPI()
origins = ["*"]
app.add_middleware(
Middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=False,
allow_methods=["*"],
allow_headers=["*"],
)
)
fasttext.FastText.eprint = lambda x: None
# Get time of request
def get_time():
nairobi_timezone = pytz.timezone('Africa/Nairobi')
current_time_nairobi = datetime.now(nairobi_timezone)
curr_day = current_time_nairobi.strftime('%A')
curr_date = current_time_nairobi.strftime('%Y-%m-%d')
curr_time = current_time_nairobi.strftime('%H:%M:%S')
full_date = f"{curr_day} | {curr_date} | {curr_time}"
return full_date, curr_time
# Load the model and tokenizer ..... only once!
beam_size = 1 # change to a smaller value for faster inference
device = "cpu" # or "cuda"
# Language Prediction model
print("\nimporting Language Prediction model")
lang_model_file = "lid218e.bin"
lang_model_full_path = os.path.join(os.path.dirname(__file__), lang_model_file)
lang_model = fasttext.load_model(lang_model_full_path)
# Load the source SentencePiece model
print("\nimporting SentencePiece model")
sp_model_file = "spm.model"
sp_model_full_path = os.path.join(os.path.dirname(__file__), sp_model_file)
sp = spm.SentencePieceProcessor()
sp.load(sp_model_full_path)
# Import The Translator model
print("\nimporting Translator model")
ct_model_file = "sematrans-3.3B"
ct_model_full_path = os.path.join(os.path.dirname(__file__), ct_model_file)
translator = ctranslate2.Translator(ct_model_full_path, device)
print('\nDone importing models\n')
def translate_detect(userinput: str, target_lang: str):
source_sents = [userinput]
source_sents = [sent.strip() for sent in source_sents]
target_prefix = [[target_lang]] * len(source_sents)
# Predict the source language
predictions = lang_model.predict(source_sents[0], k=1)
source_lang = predictions[0][0].replace('__label__', '')
# Subword the source sentences
source_sents_subworded = sp.encode(source_sents, out_type=str)
source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
# Translate the source sentences
translations = translator.translate_batch(
source_sents_subworded,
batch_type="tokens",
max_batch_size=2024,
beam_size=beam_size,
target_prefix=target_prefix,
)
translations = [translation[0]['tokens'] for translation in translations]
# Desubword the target sentences
translations_desubword = sp.decode(translations)
translations_desubword = [sent[len(target_lang):] for sent in translations_desubword]
# Return the source language and the translated text
return source_lang, translations_desubword
def translate_enter(userinput: str, source_lang: str, target_lang: str):
source_sents = [userinput]
source_sents = [sent.strip() for sent in source_sents]
target_prefix = [[target_lang]] * len(source_sents)
# Subword the source sentences
source_sents_subworded = sp.encode(source_sents, out_type=str)
source_sents_subworded = [[source_lang] + sent + ["</s>"] for sent in source_sents_subworded]
# Translate the source sentences
translations = translator.translate_batch(source_sents_subworded, batch_type="tokens", max_batch_size=2024, beam_size=beam_size, target_prefix=target_prefix)
translations = [translation[0]['tokens'] for translation in translations]
# Desubword the target sentences
translations_desubword = sp.decode(translations)
translations_desubword = [sent[len(target_lang):] for sent in translations_desubword]
# Return the source language and the translated text
return translations_desubword[0]
@app.get("/")
async def read_root():
gradio_interface = """
<html>
<meta name="viewport" content="width=device-width, height=device-height, initial-scale=1.0">
<head>
<title>Sema</title>
</head>
<frameset>
<frame src=https://kamau1-semaapi-frontend.hf.space/?embedded=true'>
</frameset>
</html>
"""
return HTMLResponse(content=gradio_interface)
@app.post("/translate_detect/")
async def translate_detect_endpoint(request: Request):
datad = await request.json()
userinputd = datad.get("userinput")
target_langd = datad.get("target_lang")
dfull_date = get_time()[0]
print(f"\nrequest: {dfull_date}\nTarget Language; {target_langd}, User Input: {userinputd}\n")
if not userinputd or not target_langd:
raise HTTPException(status_code=422, detail="Both 'userinput' and 'target_lang' are required.")
source_langd, translated_text_d = translate_detect(userinputd, target_langd)
dcurrent_time = get_time()[1]
print(f"\nresponse: {dcurrent_time}; ... Source_language: {source_langd}, Translated Text: {translated_text_d}\n\n")
return {
"source_language": source_langd,
"translated_text": translated_text_d[0],
}
@app.post("/translate_enter/")
async def translate_enter_endpoint(request: Request):
datae = await request.json()
userinpute = datae.get("userinput")
source_lange = datae.get("source_lang")
target_lange = datae.get("target_lang")
efull_date = get_time()[0]
print(f"\nrequest: {efull_date}\nSource_language; {source_lange}, Target Language; {target_lange}, User Input: {userinpute}\n")
if not userinpute or not target_lange:
raise HTTPException(status_code=422, detail="'userinput' 'sourc_lang'and 'target_lang' are required.")
translated_text_e = translate_enter(userinpute, source_lange, target_lange)
ecurrent_time = get_time()[1]
print(f"\nresponse: {ecurrent_time}; ... Translated Text: {translated_text_e}\n\n")
return {
"translated_text": translated_text_e,
}
print("\nAPI starting .......\n")