Spaces:
Runtime error
Runtime error
import argparse | |
import gc | |
import os | |
import re | |
import shutil | |
import gradio as gr | |
import requests | |
import torch | |
from dreamcreature.pipeline import create_args, load_pipeline | |
def download_file(url, local_path): | |
if os.path.exists(local_path): | |
return | |
with requests.get(url, stream=True) as r: | |
with open(local_path, 'wb') as f: | |
shutil.copyfileobj(r.raw, f) | |
# Example usage | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--model_name', default='dreamcreature-sd1.5-dog') | |
parser.add_argument('--checkpoint', default='checkpoint-150000') | |
opt = parser.parse_args() | |
model_name = opt.model_name | |
checkpoint_name = opt.checkpoint | |
repo_url = f"https://huggingface.co/kamwoh/{model_name}/resolve/main" | |
file_url = repo_url + f"/{checkpoint_name}/pytorch_model.bin" | |
local_path = f"{model_name}/{checkpoint_name}/pytorch_model.bin" | |
os.makedirs(f"{model_name}/{checkpoint_name}", exist_ok=True) | |
download_file(file_url, local_path) | |
file_url = repo_url + f"/{checkpoint_name}/pytorch_model_1.bin" | |
local_path = f"{model_name}/{checkpoint_name}/pytorch_model_1.bin" | |
download_file(file_url, local_path) | |
OUTPUT_DIR = model_name | |
args = create_args(OUTPUT_DIR) | |
if 'dpo' in OUTPUT_DIR: | |
args.unet_path = "mhdang/dpo-sd1.5-text2image-v1" | |
pipe = load_pipeline(args, torch.float16, 'cuda') | |
pipe = pipe.to(torch.float16) | |
pipe.verbose = True | |
pipe.v = 're' | |
pipe.num_k_per_part = 120 | |
MAPPING = { | |
'eye': 0, | |
'neck': 2, | |
'ear': 3, | |
'body': 4, | |
'leg': 5, | |
'nose': 6, | |
'forehead': 7 | |
} | |
ID2NAME = open('data/dogs/class_names.txt').readlines() | |
ID2NAME = [line.strip() for line in ID2NAME] | |
def process_text(text): | |
pattern = r"<([^:>]+):(\d+)>" | |
result = text | |
offset = 0 | |
part2id = [] | |
for match in re.finditer(pattern, text): | |
key = match.group(1) | |
clsid = int(match.group(2)) | |
clsid = min(max(clsid, 1), 200) # must be 1~200 | |
replacement = f"<{MAPPING[key]}:{clsid - 1}>" | |
start, end = match.span() | |
# Adjust the start and end positions based on the offset from previous replacements | |
start += offset | |
end += offset | |
# Replace the matched text with the replacement | |
result = result[:start] + replacement + result[end:] | |
# Update the offset for the next replacement | |
offset += len(replacement) - (end - start) | |
part2id.append(f'{key}: {ID2NAME[clsid - 1]}') | |
return result, part2id | |
def generate_images(prompt, negative_prompt, num_inference_steps, guidance_scale, num_images, seed): | |
generator = torch.Generator(device='cuda') | |
generator = generator.manual_seed(int(seed)) | |
try: | |
prompt, part2id = process_text(prompt) | |
negative_prompt, _ = process_text(negative_prompt) | |
images = pipe(prompt, | |
negative_prompt=negative_prompt, generator=generator, | |
num_inference_steps=int(num_inference_steps), guidance_scale=guidance_scale, | |
num_images_per_prompt=num_images).images | |
except Exception as e: | |
raise gr.Error(f"Probably due to the prompt have invalid input, please follow the instruction. " | |
f"The error message: {e}") | |
finally: | |
gc.collect() | |
torch.cuda.empty_cache() | |
return images, '; '.join(part2id) | |
with gr.Blocks(title="DreamCreature") as demo: | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
# DreamCreature (Stanford Dogs) | |
To create your own creature, you can type: | |
`"a photo of a <nose:id> <ear:id> dog"` where `id` ranges from 0~119 (120 classes corresponding to Stanford Dogs) | |
For instance `"a photo of a <nose:2> <ear:112> dog"` using head of `maltese dog (2)` and wing of `cardigan (112)` | |
Please see `id` in https://github.com/kamwoh/dreamcreature/blob/master/src/data/dogs/class_names.txt | |
Sub-concept transfer: `"a photo of a <ear:112> cat"` | |
Inspiring design: `"a photo of a <eye:38> <body:38> teddy bear"` | |
(Experimental) You can also use two parts together such as: | |
`"a photo of a <nose:1> <nose:112> dog"` mixing head of `maltese dog (2)` and `spotted cardigan (112)` | |
The current available parts are: `eye`, `neck`, `ear`, `body`, `leg`, `nose` and `forehead` | |
""") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Group(): | |
prompt = gr.Textbox(label="Prompt", value="a photo of a <eye:37> <body:37> teddy bear") | |
negative_prompt = gr.Textbox(label="Negative Prompt", | |
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic") | |
num_inference_steps = gr.Slider(minimum=10, maximum=100, step=1, value=30, label="Num Inference Steps") | |
guidance_scale = gr.Slider(minimum=2, maximum=20, step=0.1, value=7.5, label="Guidance Scale") | |
num_images = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number of Images") | |
seed = gr.Number(label="Seed", value=777881414) | |
button = gr.Button() | |
with gr.Column(): | |
output_images = gr.Gallery(columns=4, label='Output') | |
markdown_labels = gr.Markdown("") | |
button.click(fn=generate_images, | |
inputs=[prompt, negative_prompt, num_inference_steps, guidance_scale, num_images, | |
seed], outputs=[output_images, markdown_labels], show_progress=True) | |
demo.queue().launch(inline=False, share=True, debug=True, server_name='0.0.0.0') | |