Spaces:
Running
Running
""" | |
Multimodal Chatbot Arena (side-by-side) tab. | |
Users chat with two chosen models. | |
""" | |
import json | |
import os | |
import time | |
from typing import List, Union | |
import gradio as gr | |
import numpy as np | |
from .constants import ( | |
TEXT_MODERATION_MSG, | |
IMAGE_MODERATION_MSG, | |
MODERATION_MSG, | |
CONVERSATION_LIMIT_MSG, | |
SLOW_MODEL_MSG, | |
INPUT_CHAR_LEN_LIMIT, | |
CONVERSATION_TURN_LIMIT, | |
SURVEY_LINK, | |
) | |
from .gradio_block_arena_named import ( | |
flash_buttons, | |
share_click, | |
bot_response_multi, | |
) | |
from .gradio_block_arena_vision import ( | |
get_vqa_sample, | |
set_invisible_image, | |
set_visible_image, | |
add_image, | |
moderate_input, | |
_prepare_text_with_image, | |
convert_images_to_conversation_format, | |
enable_multimodal, | |
disable_multimodal, | |
invisible_text, | |
invisible_btn, | |
visible_text, | |
) | |
from .gradio_global_state import Context | |
from .gradio_web_server import ( | |
State, | |
bot_response, | |
get_conv_log_filename, | |
no_change_btn, | |
enable_btn, | |
disable_btn, | |
invisible_btn, | |
acknowledgment_md, | |
get_ip, | |
get_model_description_md, | |
enable_text, | |
) | |
from .remote_logger import get_remote_logger | |
from .utils import ( | |
build_logger, | |
moderation_filter, | |
image_moderation_filter, | |
) | |
logger = build_logger("gradio_web_server_multi", "gradio_web_server_multi.log") | |
num_sides = 2 | |
enable_moderation = False | |
def load_demo_side_by_side_vision_named(context: Context): | |
states = [None] * num_sides | |
# default to the text models | |
models = context.text_models | |
model_left = models[0] if len(models) > 0 else "" | |
if len(models) > 1: | |
weights = ([1] * 128)[: len(models) - 1] | |
weights = weights / np.sum(weights) | |
model_right = np.random.choice(models[1:], p=weights) | |
else: | |
model_right = model_left | |
all_models = context.models | |
selector_updates = [ | |
gr.Dropdown(choices=all_models, value=model_left, visible=True), | |
gr.Dropdown(choices=all_models, value=model_right, visible=True), | |
] | |
return states + selector_updates | |
def clear_history_example(request: gr.Request): | |
logger.info(f"clear_history_example (named). ip: {get_ip(request)}") | |
return ( | |
[None] * num_sides | |
+ [None] * num_sides | |
+ [enable_multimodal, invisible_text, invisible_btn] | |
+ [invisible_btn] * 4 | |
+ [disable_btn] * 2 | |
) | |
def vote_last_response(states, vote_type, model_selectors, request: gr.Request): | |
filename = get_conv_log_filename( | |
states[0].is_vision, states[0].has_csam_image) | |
with open(filename, "a") as fout: | |
data = { | |
"tstamp": round(time.time(), 4), | |
"type": vote_type, | |
"models": [x for x in model_selectors], | |
"states": [x.dict() for x in states], | |
"ip": get_ip(request), | |
} | |
fout.write(json.dumps(data) + "\n") | |
get_remote_logger().log(data) | |
def leftvote_last_response( | |
state0, state1, model_selector0, model_selector1, request: gr.Request | |
): | |
logger.info(f"leftvote (named). ip: {get_ip(request)}") | |
vote_last_response( | |
[state0, state1], "leftvote", [model_selector0, model_selector1], request | |
) | |
return (None,) + (disable_btn,) * 4 | |
def rightvote_last_response( | |
state0, state1, model_selector0, model_selector1, request: gr.Request | |
): | |
logger.info(f"rightvote (named). ip: {get_ip(request)}") | |
vote_last_response( | |
[state0, state1], "rightvote", [ | |
model_selector0, model_selector1], request | |
) | |
return (None,) + (disable_btn,) * 4 | |
def tievote_last_response( | |
state0, state1, model_selector0, model_selector1, request: gr.Request | |
): | |
logger.info(f"tievote (named). ip: {get_ip(request)}") | |
vote_last_response( | |
[state0, state1], "tievote", [model_selector0, model_selector1], request | |
) | |
return (None,) + (disable_btn,) * 4 | |
def bothbad_vote_last_response( | |
state0, state1, model_selector0, model_selector1, request: gr.Request | |
): | |
logger.info(f"bothbad_vote (named). ip: {get_ip(request)}") | |
vote_last_response( | |
[state0, state1], "bothbad_vote", [ | |
model_selector0, model_selector1], request | |
) | |
return (None,) + (disable_btn,) * 4 | |
def regenerate(state0, state1, request: gr.Request): | |
logger.info(f"regenerate (named). ip: {get_ip(request)}") | |
states = [state0, state1] | |
if state0.regen_support and state1.regen_support: | |
for i in range(num_sides): | |
states[i].conv.update_last_message(None) | |
return ( | |
states | |
+ [x.to_gradio_chatbot() for x in states] | |
+ [None] | |
+ [disable_btn] * 6 | |
) | |
states[0].skip_next = True | |
states[1].skip_next = True | |
return ( | |
states + [x.to_gradio_chatbot() for x in states] + | |
[None] + [no_change_btn] * 6 | |
) | |
def clear_history(request: gr.Request): | |
logger.info(f"clear_history (named). ip: {get_ip(request)}") | |
return ( | |
[None] * num_sides | |
+ [None] * num_sides | |
+ [enable_multimodal, invisible_text, invisible_btn] | |
+ [invisible_btn] * 4 | |
+ [disable_btn] * 2 | |
) | |
def add_text( | |
state0, | |
state1, | |
model_selector0, | |
model_selector1, | |
chat_input: Union[str, dict], | |
context: Context, | |
request: gr.Request, | |
): | |
if isinstance(chat_input, dict): | |
text, images = chat_input["text"], chat_input["files"] | |
else: | |
text, images = chat_input, [] | |
if len(images) > 0: | |
if ( | |
model_selector0 in context.text_models | |
and model_selector0 not in context.vision_models | |
): | |
gr.Warning( | |
f"{model_selector0} is a text-only model. Image is ignored.") | |
images = [] | |
if ( | |
model_selector1 in context.text_models | |
and model_selector1 not in context.vision_models | |
): | |
gr.Warning( | |
f"{model_selector1} is a text-only model. Image is ignored.") | |
images = [] | |
ip = get_ip(request) | |
logger.info(f"add_text (named). ip: {ip}. len: {len(text)}") | |
states = [state0, state1] | |
model_selectors = [model_selector0, model_selector1] | |
# Init states if necessary | |
for i in range(num_sides): | |
if states[i] is None and len(images) == 0: | |
states[i] = State(model_selectors[i], is_vision=False) | |
elif states[i] is None and len(images) > 0: | |
states[i] = State(model_selectors[i], is_vision=True) | |
if len(text) <= 0: | |
for i in range(num_sides): | |
states[i].skip_next = True | |
return ( | |
states | |
+ [x.to_gradio_chatbot() for x in states] | |
+ [None, "", no_change_btn] | |
+ [ | |
no_change_btn, | |
] | |
* 6 | |
) | |
model_list = [states[i].model_name for i in range(num_sides)] | |
all_conv_text_left = states[0].conv.get_prompt() | |
all_conv_text_right = states[0].conv.get_prompt() | |
all_conv_text = ( | |
all_conv_text_left[-1000:] + | |
all_conv_text_right[-1000:] + "\nuser: " + text | |
) | |
images = convert_images_to_conversation_format(images) | |
text, image_flagged, csam_flag = moderate_input( | |
state0, text, all_conv_text, model_list, images, ip | |
) | |
conv = states[0].conv | |
if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT: | |
logger.info(f"conversation turn limit. ip: {ip}. text: {text}") | |
for i in range(num_sides): | |
states[i].skip_next = True | |
return ( | |
states | |
+ [x.to_gradio_chatbot() for x in states] | |
+ [{"text": CONVERSATION_LIMIT_MSG}, "", no_change_btn] | |
+ [ | |
no_change_btn, | |
] | |
* 6 | |
) | |
if image_flagged: | |
logger.info(f"image flagged. ip: {ip}. text: {text}") | |
for i in range(num_sides): | |
states[i].skip_next = True | |
return ( | |
states | |
+ [x.to_gradio_chatbot() for x in states] | |
+ [{"text": IMAGE_MODERATION_MSG}, "", no_change_btn] | |
+ [ | |
no_change_btn, | |
] | |
* 6 | |
) | |
text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off | |
for i in range(num_sides): | |
post_processed_text = _prepare_text_with_image( | |
states[i], text, images, csam_flag=csam_flag | |
) | |
states[i].conv.append_message( | |
states[i].conv.roles[0], post_processed_text) | |
states[i].conv.append_message(states[i].conv.roles[1], None) | |
states[i].skip_next = False | |
return ( | |
states | |
+ [x.to_gradio_chatbot() for x in states] | |
+ [disable_multimodal, visible_text, enable_btn] | |
+ [ | |
disable_btn, | |
] | |
* 6 | |
) | |
def build_side_by_side_vision_ui_named(context: Context, random_questions=None): | |
notice_markdown = f""" | |
# βοΈ Chatbot Arena (formerly LMSYS): Free AI Chat to Compare & Test Best AI Chatbots | |
{SURVEY_LINK} | |
## π How It Works | |
- Ask any question to two chosen models (e.g., ChatGPT, Gemini, Claude, Llama) and vote for the better one! | |
- You can chat for multiple turns until you identify a winner. | |
Note: You can only chat with <span style='color: #DE3163; font-weight: bold'>one image per conversation</span>. You can upload images less than 15MB. Click the "Random Example" button to chat with a random image. | |
**βοΈ For research purposes, we log user prompts and images, and may release this data to the public in the future. Please do not upload any confidential or personal information.** | |
## π€ Choose two models to compare | |
""" | |
states = [gr.State() for _ in range(num_sides)] | |
model_selectors = [None] * num_sides | |
chatbots = [None] * num_sides | |
notice = gr.Markdown(notice_markdown, elem_id="notice_markdown") | |
text_and_vision_models = context.models | |
context_state = gr.State(context) | |
with gr.Row(): | |
with gr.Column(scale=2, visible=False) as image_column: | |
imagebox = gr.Image( | |
type="pil", | |
show_label=False, | |
interactive=False, | |
) | |
with gr.Column(scale=5): | |
with gr.Group(elem_id="share-region-anony"): | |
with gr.Accordion( | |
f"π Expand to see the descriptions of {len(text_and_vision_models)} models", | |
open=False, | |
): | |
model_description_md = get_model_description_md( | |
text_and_vision_models | |
) | |
gr.Markdown( | |
model_description_md, elem_id="model_description_markdown" | |
) | |
with gr.Row(): | |
for i in range(num_sides): | |
with gr.Column(): | |
model_selectors[i] = gr.Dropdown( | |
choices=text_and_vision_models, | |
value=text_and_vision_models[i] | |
if len(text_and_vision_models) > i | |
else "", | |
interactive=True, | |
show_label=False, | |
container=False, | |
) | |
with gr.Row(): | |
for i in range(num_sides): | |
label = "Model A" if i == 0 else "Model B" | |
with gr.Column(): | |
chatbots[i] = gr.Chatbot( | |
label=label, | |
elem_id=f"chatbot", | |
height=650, | |
show_copy_button=True, | |
) | |
with gr.Row(): | |
leftvote_btn = gr.Button( | |
value="π A is better", visible=False, interactive=False | |
) | |
rightvote_btn = gr.Button( | |
value="π B is better", visible=False, interactive=False | |
) | |
tie_btn = gr.Button(value="π€ Tie", visible=False, interactive=False) | |
bothbad_btn = gr.Button( | |
value="π Both are bad", visible=False, interactive=False | |
) | |
with gr.Row(): | |
textbox = gr.Textbox( | |
show_label=False, | |
placeholder="π Enter your prompt and press ENTER", | |
elem_id="input_box", | |
visible=False, | |
) | |
send_btn = gr.Button( | |
value="Send", variant="primary", scale=0, visible=False, interactive=False | |
) | |
multimodal_textbox = gr.MultimodalTextbox( | |
file_types=["image"], | |
show_label=False, | |
placeholder="Enter your prompt or add image here", | |
container=True, | |
elem_id="input_box", | |
) | |
with gr.Row() as button_row: | |
if random_questions: | |
global vqa_samples | |
with open(random_questions, "r") as f: | |
vqa_samples = json.load(f) | |
random_btn = gr.Button(value="π² Random Example", interactive=True) | |
clear_btn = gr.Button(value="ποΈ Clear history", interactive=False) | |
regenerate_btn = gr.Button(value="π Regenerate", interactive=False) | |
share_btn = gr.Button(value="π· Share") | |
with gr.Accordion("Parameters", open=False) as parameter_row: | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.7, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
top_p = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=1.0, | |
step=0.1, | |
interactive=True, | |
label="Top P", | |
) | |
max_output_tokens = gr.Slider( | |
minimum=16, | |
maximum=2048, | |
value=1024, | |
step=64, | |
interactive=True, | |
label="Max output tokens", | |
) | |
gr.Markdown(acknowledgment_md, elem_id="ack_markdown") | |
# Register listeners | |
btn_list = [ | |
leftvote_btn, | |
rightvote_btn, | |
tie_btn, | |
bothbad_btn, | |
regenerate_btn, | |
clear_btn, | |
] | |
leftvote_btn.click( | |
leftvote_last_response, | |
states + model_selectors, | |
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], | |
) | |
rightvote_btn.click( | |
rightvote_last_response, | |
states + model_selectors, | |
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], | |
) | |
tie_btn.click( | |
tievote_last_response, | |
states + model_selectors, | |
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], | |
) | |
bothbad_btn.click( | |
bothbad_vote_last_response, | |
states + model_selectors, | |
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], | |
) | |
regenerate_btn.click( | |
regenerate, states, states + chatbots + [textbox] + btn_list | |
).then( | |
bot_response_multi, | |
states + [temperature, top_p, max_output_tokens], | |
states + chatbots + btn_list, | |
).then( | |
flash_buttons, [], btn_list | |
) | |
clear_btn.click( | |
clear_history, | |
None, | |
states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, | |
) | |
share_js = """ | |
function (a, b, c, d) { | |
const captureElement = document.querySelector('#share-region-named'); | |
html2canvas(captureElement) | |
.then(canvas => { | |
canvas.style.display = 'none' | |
document.body.appendChild(canvas) | |
return canvas | |
}) | |
.then(canvas => { | |
const image = canvas.toDataURL('image/png') | |
const a = document.createElement('a') | |
a.setAttribute('download', 'chatbot-arena.png') | |
a.setAttribute('href', image) | |
a.click() | |
canvas.remove() | |
}); | |
return [a, b, c, d]; | |
} | |
""" | |
share_btn.click(share_click, states + model_selectors, [], js=share_js) | |
for i in range(num_sides): | |
model_selectors[i].change( | |
clear_history, | |
None, | |
states + chatbots + [multimodal_textbox, | |
textbox, send_btn] + btn_list, | |
).then(set_visible_image, [multimodal_textbox], [image_column]) | |
multimodal_textbox.input(add_image, [multimodal_textbox], [imagebox]).then( | |
set_visible_image, [multimodal_textbox], [image_column] | |
).then( | |
clear_history_example, | |
None, | |
states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, | |
) | |
multimodal_textbox.submit( | |
add_text, | |
states + model_selectors + [multimodal_textbox, context_state], | |
states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, | |
).then(set_invisible_image, [], [image_column]).then( | |
bot_response_multi, | |
states + [temperature, top_p, max_output_tokens], | |
states + chatbots + btn_list, | |
).then( | |
flash_buttons, [], btn_list | |
) | |
textbox.submit( | |
add_text, | |
states + model_selectors + [textbox, context_state], | |
states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, | |
).then(set_invisible_image, [], [image_column]).then( | |
bot_response_multi, | |
states + [temperature, top_p, max_output_tokens], | |
states + chatbots + btn_list, | |
).then( | |
flash_buttons, [], btn_list | |
) | |
send_btn.click( | |
add_text, | |
states + model_selectors + [textbox, context_state], | |
states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, | |
).then(set_invisible_image, [], [image_column]).then( | |
bot_response_multi, | |
states + [temperature, top_p, max_output_tokens], | |
states + chatbots + btn_list, | |
).then( | |
flash_buttons, [], btn_list | |
) | |
if random_questions: | |
random_btn.click( | |
get_vqa_sample, # First, get the VQA sample | |
[], # Pass the path to the VQA samples | |
[multimodal_textbox, imagebox], # Outputs are textbox and imagebox | |
).then(set_visible_image, [multimodal_textbox], [image_column]).then( | |
clear_history_example, | |
None, | |
states + chatbots + [multimodal_textbox, | |
textbox, send_btn] + btn_list, | |
) | |
return states + model_selectors | |