chatbotarena-ja / serve /gradio_block_arena_vision_named.py
a100 kh
com
529989d
raw
history blame
18.4 kB
"""
Multimodal Chatbot Arena (side-by-side) tab.
Users chat with two chosen models.
"""
import json
import os
import time
from typing import List, Union
import gradio as gr
import numpy as np
from .constants import (
TEXT_MODERATION_MSG,
IMAGE_MODERATION_MSG,
MODERATION_MSG,
CONVERSATION_LIMIT_MSG,
SLOW_MODEL_MSG,
INPUT_CHAR_LEN_LIMIT,
CONVERSATION_TURN_LIMIT,
SURVEY_LINK,
)
from .gradio_block_arena_named import (
flash_buttons,
share_click,
bot_response_multi,
)
from .gradio_block_arena_vision import (
get_vqa_sample,
set_invisible_image,
set_visible_image,
add_image,
moderate_input,
_prepare_text_with_image,
convert_images_to_conversation_format,
enable_multimodal,
disable_multimodal,
invisible_text,
invisible_btn,
visible_text,
)
from .gradio_global_state import Context
from .gradio_web_server import (
State,
bot_response,
get_conv_log_filename,
no_change_btn,
enable_btn,
disable_btn,
invisible_btn,
acknowledgment_md,
get_ip,
get_model_description_md,
enable_text,
)
from .remote_logger import get_remote_logger
from .utils import (
build_logger,
moderation_filter,
image_moderation_filter,
)
logger = build_logger("gradio_web_server_multi", "gradio_web_server_multi.log")
num_sides = 2
enable_moderation = False
def load_demo_side_by_side_vision_named(context: Context):
states = [None] * num_sides
# default to the text models
models = context.text_models
model_left = models[0] if len(models) > 0 else ""
if len(models) > 1:
weights = ([1] * 128)[: len(models) - 1]
weights = weights / np.sum(weights)
model_right = np.random.choice(models[1:], p=weights)
else:
model_right = model_left
all_models = context.models
selector_updates = [
gr.Dropdown(choices=all_models, value=model_left, visible=True),
gr.Dropdown(choices=all_models, value=model_right, visible=True),
]
return states + selector_updates
def clear_history_example(request: gr.Request):
logger.info(f"clear_history_example (named). ip: {get_ip(request)}")
return (
[None] * num_sides
+ [None] * num_sides
+ [enable_multimodal, invisible_text, invisible_btn]
+ [invisible_btn] * 4
+ [disable_btn] * 2
)
def vote_last_response(states, vote_type, model_selectors, request: gr.Request):
filename = get_conv_log_filename(
states[0].is_vision, states[0].has_csam_image)
with open(filename, "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"models": [x for x in model_selectors],
"states": [x.dict() for x in states],
"ip": get_ip(request),
}
fout.write(json.dumps(data) + "\n")
get_remote_logger().log(data)
def leftvote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"leftvote (named). ip: {get_ip(request)}")
vote_last_response(
[state0, state1], "leftvote", [model_selector0, model_selector1], request
)
return (None,) + (disable_btn,) * 4
def rightvote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"rightvote (named). ip: {get_ip(request)}")
vote_last_response(
[state0, state1], "rightvote", [
model_selector0, model_selector1], request
)
return (None,) + (disable_btn,) * 4
def tievote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"tievote (named). ip: {get_ip(request)}")
vote_last_response(
[state0, state1], "tievote", [model_selector0, model_selector1], request
)
return (None,) + (disable_btn,) * 4
def bothbad_vote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"bothbad_vote (named). ip: {get_ip(request)}")
vote_last_response(
[state0, state1], "bothbad_vote", [
model_selector0, model_selector1], request
)
return (None,) + (disable_btn,) * 4
def regenerate(state0, state1, request: gr.Request):
logger.info(f"regenerate (named). ip: {get_ip(request)}")
states = [state0, state1]
if state0.regen_support and state1.regen_support:
for i in range(num_sides):
states[i].conv.update_last_message(None)
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [None]
+ [disable_btn] * 6
)
states[0].skip_next = True
states[1].skip_next = True
return (
states + [x.to_gradio_chatbot() for x in states] +
[None] + [no_change_btn] * 6
)
def clear_history(request: gr.Request):
logger.info(f"clear_history (named). ip: {get_ip(request)}")
return (
[None] * num_sides
+ [None] * num_sides
+ [enable_multimodal, invisible_text, invisible_btn]
+ [invisible_btn] * 4
+ [disable_btn] * 2
)
def add_text(
state0,
state1,
model_selector0,
model_selector1,
chat_input: Union[str, dict],
context: Context,
request: gr.Request,
):
if isinstance(chat_input, dict):
text, images = chat_input["text"], chat_input["files"]
else:
text, images = chat_input, []
if len(images) > 0:
if (
model_selector0 in context.text_models
and model_selector0 not in context.vision_models
):
gr.Warning(
f"{model_selector0} is a text-only model. Image is ignored.")
images = []
if (
model_selector1 in context.text_models
and model_selector1 not in context.vision_models
):
gr.Warning(
f"{model_selector1} is a text-only model. Image is ignored.")
images = []
ip = get_ip(request)
logger.info(f"add_text (named). ip: {ip}. len: {len(text)}")
states = [state0, state1]
model_selectors = [model_selector0, model_selector1]
# Init states if necessary
for i in range(num_sides):
if states[i] is None and len(images) == 0:
states[i] = State(model_selectors[i], is_vision=False)
elif states[i] is None and len(images) > 0:
states[i] = State(model_selectors[i], is_vision=True)
if len(text) <= 0:
for i in range(num_sides):
states[i].skip_next = True
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [None, "", no_change_btn]
+ [
no_change_btn,
]
* 6
)
model_list = [states[i].model_name for i in range(num_sides)]
all_conv_text_left = states[0].conv.get_prompt()
all_conv_text_right = states[0].conv.get_prompt()
all_conv_text = (
all_conv_text_left[-1000:] +
all_conv_text_right[-1000:] + "\nuser: " + text
)
images = convert_images_to_conversation_format(images)
text, image_flagged, csam_flag = moderate_input(
state0, text, all_conv_text, model_list, images, ip
)
conv = states[0].conv
if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
logger.info(f"conversation turn limit. ip: {ip}. text: {text}")
for i in range(num_sides):
states[i].skip_next = True
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [{"text": CONVERSATION_LIMIT_MSG}, "", no_change_btn]
+ [
no_change_btn,
]
* 6
)
if image_flagged:
logger.info(f"image flagged. ip: {ip}. text: {text}")
for i in range(num_sides):
states[i].skip_next = True
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [{"text": IMAGE_MODERATION_MSG}, "", no_change_btn]
+ [
no_change_btn,
]
* 6
)
text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off
for i in range(num_sides):
post_processed_text = _prepare_text_with_image(
states[i], text, images, csam_flag=csam_flag
)
states[i].conv.append_message(
states[i].conv.roles[0], post_processed_text)
states[i].conv.append_message(states[i].conv.roles[1], None)
states[i].skip_next = False
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [disable_multimodal, visible_text, enable_btn]
+ [
disable_btn,
]
* 6
)
def build_side_by_side_vision_ui_named(context: Context, random_questions=None):
notice_markdown = f"""
# βš”οΈ Chatbot Arena (formerly LMSYS): Free AI Chat to Compare & Test Best AI Chatbots
{SURVEY_LINK}
## πŸ“œ How It Works
- Ask any question to two chosen models (e.g., ChatGPT, Gemini, Claude, Llama) and vote for the better one!
- You can chat for multiple turns until you identify a winner.
Note: You can only chat with <span style='color: #DE3163; font-weight: bold'>one image per conversation</span>. You can upload images less than 15MB. Click the "Random Example" button to chat with a random image.
**❗️ For research purposes, we log user prompts and images, and may release this data to the public in the future. Please do not upload any confidential or personal information.**
## πŸ€– Choose two models to compare
"""
states = [gr.State() for _ in range(num_sides)]
model_selectors = [None] * num_sides
chatbots = [None] * num_sides
notice = gr.Markdown(notice_markdown, elem_id="notice_markdown")
text_and_vision_models = context.models
context_state = gr.State(context)
with gr.Row():
with gr.Column(scale=2, visible=False) as image_column:
imagebox = gr.Image(
type="pil",
show_label=False,
interactive=False,
)
with gr.Column(scale=5):
with gr.Group(elem_id="share-region-anony"):
with gr.Accordion(
f"πŸ” Expand to see the descriptions of {len(text_and_vision_models)} models",
open=False,
):
model_description_md = get_model_description_md(
text_and_vision_models
)
gr.Markdown(
model_description_md, elem_id="model_description_markdown"
)
with gr.Row():
for i in range(num_sides):
with gr.Column():
model_selectors[i] = gr.Dropdown(
choices=text_and_vision_models,
value=text_and_vision_models[i]
if len(text_and_vision_models) > i
else "",
interactive=True,
show_label=False,
container=False,
)
with gr.Row():
for i in range(num_sides):
label = "Model A" if i == 0 else "Model B"
with gr.Column():
chatbots[i] = gr.Chatbot(
label=label,
elem_id=f"chatbot",
height=650,
show_copy_button=True,
)
with gr.Row():
leftvote_btn = gr.Button(
value="πŸ‘ˆ A is better", visible=False, interactive=False
)
rightvote_btn = gr.Button(
value="πŸ‘‰ B is better", visible=False, interactive=False
)
tie_btn = gr.Button(value="🀝 Tie", visible=False, interactive=False)
bothbad_btn = gr.Button(
value="πŸ‘Ž Both are bad", visible=False, interactive=False
)
with gr.Row():
textbox = gr.Textbox(
show_label=False,
placeholder="πŸ‘‰ Enter your prompt and press ENTER",
elem_id="input_box",
visible=False,
)
send_btn = gr.Button(
value="Send", variant="primary", scale=0, visible=False, interactive=False
)
multimodal_textbox = gr.MultimodalTextbox(
file_types=["image"],
show_label=False,
placeholder="Enter your prompt or add image here",
container=True,
elem_id="input_box",
)
with gr.Row() as button_row:
if random_questions:
global vqa_samples
with open(random_questions, "r") as f:
vqa_samples = json.load(f)
random_btn = gr.Button(value="🎲 Random Example", interactive=True)
clear_btn = gr.Button(value="πŸ—‘οΈ Clear history", interactive=False)
regenerate_btn = gr.Button(value="πŸ”„ Regenerate", interactive=False)
share_btn = gr.Button(value="πŸ“· Share")
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=16,
maximum=2048,
value=1024,
step=64,
interactive=True,
label="Max output tokens",
)
gr.Markdown(acknowledgment_md, elem_id="ack_markdown")
# Register listeners
btn_list = [
leftvote_btn,
rightvote_btn,
tie_btn,
bothbad_btn,
regenerate_btn,
clear_btn,
]
leftvote_btn.click(
leftvote_last_response,
states + model_selectors,
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
rightvote_btn.click(
rightvote_last_response,
states + model_selectors,
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
tie_btn.click(
tievote_last_response,
states + model_selectors,
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
bothbad_btn.click(
bothbad_vote_last_response,
states + model_selectors,
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
regenerate_btn.click(
regenerate, states, states + chatbots + [textbox] + btn_list
).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons, [], btn_list
)
clear_btn.click(
clear_history,
None,
states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list,
)
share_js = """
function (a, b, c, d) {
const captureElement = document.querySelector('#share-region-named');
html2canvas(captureElement)
.then(canvas => {
canvas.style.display = 'none'
document.body.appendChild(canvas)
return canvas
})
.then(canvas => {
const image = canvas.toDataURL('image/png')
const a = document.createElement('a')
a.setAttribute('download', 'chatbot-arena.png')
a.setAttribute('href', image)
a.click()
canvas.remove()
});
return [a, b, c, d];
}
"""
share_btn.click(share_click, states + model_selectors, [], js=share_js)
for i in range(num_sides):
model_selectors[i].change(
clear_history,
None,
states + chatbots + [multimodal_textbox,
textbox, send_btn] + btn_list,
).then(set_visible_image, [multimodal_textbox], [image_column])
multimodal_textbox.input(add_image, [multimodal_textbox], [imagebox]).then(
set_visible_image, [multimodal_textbox], [image_column]
).then(
clear_history_example,
None,
states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list,
)
multimodal_textbox.submit(
add_text,
states + model_selectors + [multimodal_textbox, context_state],
states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list,
).then(set_invisible_image, [], [image_column]).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons, [], btn_list
)
textbox.submit(
add_text,
states + model_selectors + [textbox, context_state],
states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list,
).then(set_invisible_image, [], [image_column]).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons, [], btn_list
)
send_btn.click(
add_text,
states + model_selectors + [textbox, context_state],
states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list,
).then(set_invisible_image, [], [image_column]).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons, [], btn_list
)
if random_questions:
random_btn.click(
get_vqa_sample, # First, get the VQA sample
[], # Pass the path to the VQA samples
[multimodal_textbox, imagebox], # Outputs are textbox and imagebox
).then(set_visible_image, [multimodal_textbox], [image_column]).then(
clear_history_example,
None,
states + chatbots + [multimodal_textbox,
textbox, send_btn] + btn_list,
)
return states + model_selectors