""" Multimodal Chatbot Arena (side-by-side) tab. Users chat with two chosen models. """ import json import os import time from typing import List, Union import gradio as gr import numpy as np from .constants import ( TEXT_MODERATION_MSG, IMAGE_MODERATION_MSG, MODERATION_MSG, CONVERSATION_LIMIT_MSG, SLOW_MODEL_MSG, INPUT_CHAR_LEN_LIMIT, CONVERSATION_TURN_LIMIT, SURVEY_LINK, ) from .gradio_block_arena_named import ( flash_buttons, share_click, bot_response_multi, ) from .gradio_block_arena_vision import ( get_vqa_sample, set_invisible_image, set_visible_image, add_image, moderate_input, _prepare_text_with_image, convert_images_to_conversation_format, enable_multimodal, disable_multimodal, invisible_text, invisible_btn, visible_text, ) from .gradio_global_state import Context from .gradio_web_server import ( State, bot_response, get_conv_log_filename, no_change_btn, enable_btn, disable_btn, invisible_btn, acknowledgment_md, get_ip, get_model_description_md, enable_text, ) from .remote_logger import get_remote_logger from .utils import ( build_logger, moderation_filter, image_moderation_filter, ) logger = build_logger("gradio_web_server_multi", "gradio_web_server_multi.log") num_sides = 2 enable_moderation = False def load_demo_side_by_side_vision_named(context: Context): states = [None] * num_sides # default to the text models models = context.text_models model_left = models[0] if len(models) > 0 else "" if len(models) > 1: weights = ([1] * 128)[: len(models) - 1] weights = weights / np.sum(weights) model_right = np.random.choice(models[1:], p=weights) else: model_right = model_left all_models = context.models selector_updates = [ gr.Dropdown(choices=all_models, value=model_left, visible=True), gr.Dropdown(choices=all_models, value=model_right, visible=True), ] return states + selector_updates def clear_history_example(request: gr.Request): logger.info(f"clear_history_example (named). ip: {get_ip(request)}") return ( [None] * num_sides + [None] * num_sides + [enable_multimodal, invisible_text, invisible_btn] + [invisible_btn] * 4 + [disable_btn] * 2 ) def vote_last_response(states, vote_type, model_selectors, request: gr.Request): filename = get_conv_log_filename( states[0].is_vision, states[0].has_csam_image) with open(filename, "a") as fout: data = { "tstamp": round(time.time(), 4), "type": vote_type, "models": [x for x in model_selectors], "states": [x.dict() for x in states], "ip": get_ip(request), } fout.write(json.dumps(data) + "\n") get_remote_logger().log(data) def leftvote_last_response( state0, state1, model_selector0, model_selector1, request: gr.Request ): logger.info(f"leftvote (named). ip: {get_ip(request)}") vote_last_response( [state0, state1], "leftvote", [model_selector0, model_selector1], request ) return (None,) + (disable_btn,) * 4 def rightvote_last_response( state0, state1, model_selector0, model_selector1, request: gr.Request ): logger.info(f"rightvote (named). ip: {get_ip(request)}") vote_last_response( [state0, state1], "rightvote", [ model_selector0, model_selector1], request ) return (None,) + (disable_btn,) * 4 def tievote_last_response( state0, state1, model_selector0, model_selector1, request: gr.Request ): logger.info(f"tievote (named). ip: {get_ip(request)}") vote_last_response( [state0, state1], "tievote", [model_selector0, model_selector1], request ) return (None,) + (disable_btn,) * 4 def bothbad_vote_last_response( state0, state1, model_selector0, model_selector1, request: gr.Request ): logger.info(f"bothbad_vote (named). ip: {get_ip(request)}") vote_last_response( [state0, state1], "bothbad_vote", [ model_selector0, model_selector1], request ) return (None,) + (disable_btn,) * 4 def regenerate(state0, state1, request: gr.Request): logger.info(f"regenerate (named). ip: {get_ip(request)}") states = [state0, state1] if state0.regen_support and state1.regen_support: for i in range(num_sides): states[i].conv.update_last_message(None) return ( states + [x.to_gradio_chatbot() for x in states] + [None] + [disable_btn] * 6 ) states[0].skip_next = True states[1].skip_next = True return ( states + [x.to_gradio_chatbot() for x in states] + [None] + [no_change_btn] * 6 ) def clear_history(request: gr.Request): logger.info(f"clear_history (named). ip: {get_ip(request)}") return ( [None] * num_sides + [None] * num_sides + [enable_multimodal, invisible_text, invisible_btn] + [invisible_btn] * 4 + [disable_btn] * 2 ) def add_text( state0, state1, model_selector0, model_selector1, chat_input: Union[str, dict], context: Context, request: gr.Request, ): if isinstance(chat_input, dict): text, images = chat_input["text"], chat_input["files"] else: text, images = chat_input, [] if len(images) > 0: if ( model_selector0 in context.text_models and model_selector0 not in context.vision_models ): gr.Warning( f"{model_selector0} is a text-only model. Image is ignored.") images = [] if ( model_selector1 in context.text_models and model_selector1 not in context.vision_models ): gr.Warning( f"{model_selector1} is a text-only model. Image is ignored.") images = [] ip = get_ip(request) logger.info(f"add_text (named). ip: {ip}. len: {len(text)}") states = [state0, state1] model_selectors = [model_selector0, model_selector1] # Init states if necessary for i in range(num_sides): if states[i] is None and len(images) == 0: states[i] = State(model_selectors[i], is_vision=False) elif states[i] is None and len(images) > 0: states[i] = State(model_selectors[i], is_vision=True) if len(text) <= 0: for i in range(num_sides): states[i].skip_next = True return ( states + [x.to_gradio_chatbot() for x in states] + [None, "", no_change_btn] + [ no_change_btn, ] * 6 ) model_list = [states[i].model_name for i in range(num_sides)] all_conv_text_left = states[0].conv.get_prompt() all_conv_text_right = states[0].conv.get_prompt() all_conv_text = ( all_conv_text_left[-1000:] + all_conv_text_right[-1000:] + "\nuser: " + text ) images = convert_images_to_conversation_format(images) text, image_flagged, csam_flag = moderate_input( state0, text, all_conv_text, model_list, images, ip ) conv = states[0].conv if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT: logger.info(f"conversation turn limit. ip: {ip}. text: {text}") for i in range(num_sides): states[i].skip_next = True return ( states + [x.to_gradio_chatbot() for x in states] + [{"text": CONVERSATION_LIMIT_MSG}, "", no_change_btn] + [ no_change_btn, ] * 6 ) if image_flagged: logger.info(f"image flagged. ip: {ip}. text: {text}") for i in range(num_sides): states[i].skip_next = True return ( states + [x.to_gradio_chatbot() for x in states] + [{"text": IMAGE_MODERATION_MSG}, "", no_change_btn] + [ no_change_btn, ] * 6 ) text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off for i in range(num_sides): post_processed_text = _prepare_text_with_image( states[i], text, images, csam_flag=csam_flag ) states[i].conv.append_message( states[i].conv.roles[0], post_processed_text) states[i].conv.append_message(states[i].conv.roles[1], None) states[i].skip_next = False return ( states + [x.to_gradio_chatbot() for x in states] + [disable_multimodal, visible_text, enable_btn] + [ disable_btn, ] * 6 ) def build_side_by_side_vision_ui_named(context: Context, random_questions=None): notice_markdown = f""" # ⚔️ Chatbot Arena (formerly LMSYS): Free AI Chat to Compare & Test Best AI Chatbots {SURVEY_LINK} ## 📜 How It Works - Ask any question to two chosen models (e.g., ChatGPT, Gemini, Claude, Llama) and vote for the better one! - You can chat for multiple turns until you identify a winner. Note: You can only chat with one image per conversation. You can upload images less than 15MB. Click the "Random Example" button to chat with a random image. **❗️ For research purposes, we log user prompts and images, and may release this data to the public in the future. Please do not upload any confidential or personal information.** ## 🤖 Choose two models to compare """ states = [gr.State() for _ in range(num_sides)] model_selectors = [None] * num_sides chatbots = [None] * num_sides notice = gr.Markdown(notice_markdown, elem_id="notice_markdown") text_and_vision_models = context.models context_state = gr.State(context) with gr.Row(): with gr.Column(scale=2, visible=False) as image_column: imagebox = gr.Image( type="pil", show_label=False, interactive=False, ) with gr.Column(scale=5): with gr.Group(elem_id="share-region-anony"): with gr.Accordion( f"🔍 Expand to see the descriptions of {len(text_and_vision_models)} models", open=False, ): model_description_md = get_model_description_md( text_and_vision_models ) gr.Markdown( model_description_md, elem_id="model_description_markdown" ) with gr.Row(): for i in range(num_sides): with gr.Column(): model_selectors[i] = gr.Dropdown( choices=text_and_vision_models, value=text_and_vision_models[i] if len(text_and_vision_models) > i else "", interactive=True, show_label=False, container=False, ) with gr.Row(): for i in range(num_sides): label = "Model A" if i == 0 else "Model B" with gr.Column(): chatbots[i] = gr.Chatbot( label=label, elem_id=f"chatbot", height=650, show_copy_button=True, ) with gr.Row(): leftvote_btn = gr.Button( value="👈 A is better", visible=False, interactive=False ) rightvote_btn = gr.Button( value="👉 B is better", visible=False, interactive=False ) tie_btn = gr.Button(value="🤝 Tie", visible=False, interactive=False) bothbad_btn = gr.Button( value="👎 Both are bad", visible=False, interactive=False ) with gr.Row(): textbox = gr.Textbox( show_label=False, placeholder="👉 Enter your prompt and press ENTER", elem_id="input_box", visible=False, ) send_btn = gr.Button( value="Send", variant="primary", scale=0, visible=False, interactive=False ) multimodal_textbox = gr.MultimodalTextbox( file_types=["image"], show_label=False, placeholder="Enter your prompt or add image here", container=True, elem_id="input_box", ) with gr.Row() as button_row: if random_questions: global vqa_samples with open(random_questions, "r") as f: vqa_samples = json.load(f) random_btn = gr.Button(value="🎲 Random Example", interactive=True) clear_btn = gr.Button(value="🗑️ Clear history", interactive=False) regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) share_btn = gr.Button(value="📷 Share") with gr.Accordion("Parameters", open=False) as parameter_row: temperature = gr.Slider( minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Temperature", ) top_p = gr.Slider( minimum=0.0, maximum=1.0, value=1.0, step=0.1, interactive=True, label="Top P", ) max_output_tokens = gr.Slider( minimum=16, maximum=2048, value=1024, step=64, interactive=True, label="Max output tokens", ) gr.Markdown(acknowledgment_md, elem_id="ack_markdown") # Register listeners btn_list = [ leftvote_btn, rightvote_btn, tie_btn, bothbad_btn, regenerate_btn, clear_btn, ] leftvote_btn.click( leftvote_last_response, states + model_selectors, [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], ) rightvote_btn.click( rightvote_last_response, states + model_selectors, [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], ) tie_btn.click( tievote_last_response, states + model_selectors, [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], ) bothbad_btn.click( bothbad_vote_last_response, states + model_selectors, [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn], ) regenerate_btn.click( regenerate, states, states + chatbots + [textbox] + btn_list ).then( bot_response_multi, states + [temperature, top_p, max_output_tokens], states + chatbots + btn_list, ).then( flash_buttons, [], btn_list ) clear_btn.click( clear_history, None, states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, ) share_js = """ function (a, b, c, d) { const captureElement = document.querySelector('#share-region-named'); html2canvas(captureElement) .then(canvas => { canvas.style.display = 'none' document.body.appendChild(canvas) return canvas }) .then(canvas => { const image = canvas.toDataURL('image/png') const a = document.createElement('a') a.setAttribute('download', 'chatbot-arena.png') a.setAttribute('href', image) a.click() canvas.remove() }); return [a, b, c, d]; } """ share_btn.click(share_click, states + model_selectors, [], js=share_js) for i in range(num_sides): model_selectors[i].change( clear_history, None, states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, ).then(set_visible_image, [multimodal_textbox], [image_column]) multimodal_textbox.input(add_image, [multimodal_textbox], [imagebox]).then( set_visible_image, [multimodal_textbox], [image_column] ).then( clear_history_example, None, states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, ) multimodal_textbox.submit( add_text, states + model_selectors + [multimodal_textbox, context_state], states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, ).then(set_invisible_image, [], [image_column]).then( bot_response_multi, states + [temperature, top_p, max_output_tokens], states + chatbots + btn_list, ).then( flash_buttons, [], btn_list ) textbox.submit( add_text, states + model_selectors + [textbox, context_state], states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, ).then(set_invisible_image, [], [image_column]).then( bot_response_multi, states + [temperature, top_p, max_output_tokens], states + chatbots + btn_list, ).then( flash_buttons, [], btn_list ) send_btn.click( add_text, states + model_selectors + [textbox, context_state], states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, ).then(set_invisible_image, [], [image_column]).then( bot_response_multi, states + [temperature, top_p, max_output_tokens], states + chatbots + btn_list, ).then( flash_buttons, [], btn_list ) if random_questions: random_btn.click( get_vqa_sample, # First, get the VQA sample [], # Pass the path to the VQA samples [multimodal_textbox, imagebox], # Outputs are textbox and imagebox ).then(set_visible_image, [multimodal_textbox], [image_column]).then( clear_history_example, None, states + chatbots + [multimodal_textbox, textbox, send_btn] + btn_list, ) return states + model_selectors