Spaces:
Running
Running
File size: 2,706 Bytes
9230ccf b865247 b8c3f0e 4f21439 9230ccf b8c3f0e 9230ccf 34c2c1b 104a909 34c2c1b 4f21439 b865247 4f21439 9230ccf 104a909 9230ccf 34c2c1b 9230ccf b8c3f0e 9230ccf b8c3f0e 9230ccf b8c3f0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
# from huggingface_hub import InferenceClient
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "12345"
openai_api_base = "https://a502-131-112-63-87.ngrok-free.app/v1"
model_name = "cyberagent/calm3-22b-chat"
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
"""
#streaming無し: gradio側が対応してない
completion = client.chat.completions.create(model=model_name,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
)
text = completion.choices[0].message.content.strip()
return text
"""
for message in client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
# response += token
if token is not None:
response += (token)
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.",
label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512,
step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7,
step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|