Spaces:
Running
Running
File size: 4,688 Bytes
9230ccf b865247 b8c3f0e af40ecb eb0d262 9230ccf b8c3f0e 9230ccf eb0d262 9230ccf eb0d262 9230ccf 4f21439 b865247 4f21439 9230ccf 104a909 9230ccf 34c2c1b 9230ccf b8c3f0e 9230ccf dedce6c cacaff4 dedce6c 9230ccf eb0d262 2728067 b8c3f0e 2dc9a9e b8c3f0e 9230ccf a885267 dedce6c a885267 9c53a13 a885267 e0d07cd a885267 e0d07cd 9230ccf 0798f48 a885267 0798f48 8022e8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
# from huggingface_hub import InferenceClient
from openai import OpenAI
import os
openai_api_key = os.getenv('api_key')
openai_api_base = os.getenv('url')
model_name = "weblab-GENIAC/Tanuki-8x8B-dpo-v1.0"
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
def respond(
message,
history: list[tuple[str, str]],
# system_message,
max_tokens,
temperature,
top_p,
):
messages = [
{"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
# response += token
if token is not None:
response += (token)
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# カスタムCSS
CSS = """
#chatbot {
height: auto !important;
max_height: none !important;
overflow: auto !important;
flex-grow: 1 !important;
}
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.",
# label="System message"),
gr.Slider(minimum=1, maximum=2048, value=1024,
step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.3,
step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
description = """
### [Tanuki-8x8B-dpo-v1.0](https://huggingface.co/weblab-GENIAC/Tanuki-8x8B-dpo-v1.0)との会話(期間限定での公開)
- 人工知能開発のため、入出力データは著作権フリー(CC0)で公開予定ですので、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。
"""
# グループ化して表示
with gr.Blocks(css=CSS) as interface:
# 説明文を表示
gr.Markdown(description)
# ChatInterfaceを表示
demo.render()
# components = [gr.Markdown(description), demo]
# if __name__ == "__main__":
# demo.launch()
# interface.launch()
HEADER = description
FOOTER = ""
def run():
chatbot = gr.Chatbot(
elem_id="chatbot",
scale=1,
show_copy_button=True,
height="70%",
layout="panel",
)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown(HEADER)
gr.ChatInterface(
fn=respond,
stop_btn="Stop Generation",
cache_examples=False,
multimodal=False,
chatbot=chatbot,
additional_inputs_accordion=gr.Accordion(
label="Parameters", open=False, render=False
),
additional_inputs=[
gr.Slider(
minimum=1,
maximum=4096,
step=1,
value=1024,
label="Max tokens",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=1.0,
label="Top-p",
visible=True,
render=False,
),
],
analytics_enabled=False,
)
gr.Markdown(FOOTER)
demo.queue(max_size=256, api_open=False)
demo.launch(share=False, quiet=True)
if __name__ == "__main__":
run()
|