File size: 4,688 Bytes
9230ccf
b865247
b8c3f0e
af40ecb
 
 
eb0d262
9230ccf
 
 
b8c3f0e
 
 
 
 
9230ccf
 
 
 
 
eb0d262
9230ccf
 
 
 
eb0d262
 
9230ccf
 
 
 
 
 
 
 
 
 
 
4f21439
b865247
4f21439
9230ccf
104a909
9230ccf
 
 
 
 
34c2c1b
 
 
9230ccf
 
b8c3f0e
9230ccf
 
 
dedce6c
 
 
cacaff4
 
 
 
 
 
dedce6c
 
 
9230ccf
 
 
eb0d262
 
2728067
b8c3f0e
2dc9a9e
b8c3f0e
9230ccf
 
 
 
 
 
 
 
 
a885267
dedce6c
 
a885267
 
9c53a13
a885267
e0d07cd
a885267
e0d07cd
 
9230ccf
0798f48
a885267
0798f48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8022e8a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
# from huggingface_hub import InferenceClient
from openai import OpenAI
import os
openai_api_key = os.getenv('api_key')
openai_api_base = os.getenv('url')
model_name = "weblab-GENIAC/Tanuki-8x8B-dpo-v1.0"
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)


def respond(
    message,
    history: list[tuple[str, str]],
    # system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [
        {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat.completions.create(
        model=model_name,
        messages=messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        # response += token
        if token is not None:
            response += (token)
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""

# カスタムCSS

CSS = """
#chatbot {
    height: auto !important;
    max_height: none !important;
    overflow: auto !important;
    flex-grow: 1 !important;
}
"""

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        # gr.Textbox(value="You are a friendly Chatbot.",
        #           label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=1024,
                  step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.3,
                  step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)
description = """
### [Tanuki-8x8B-dpo-v1.0](https://huggingface.co/weblab-GENIAC/Tanuki-8x8B-dpo-v1.0)との会話(期間限定での公開)
- 人工知能開発のため、入出力データは著作権フリー(CC0)で公開予定ですので、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。
"""
# グループ化して表示
with gr.Blocks(css=CSS) as interface:
    # 説明文を表示
    gr.Markdown(description)
    # ChatInterfaceを表示
    demo.render()
    # components = [gr.Markdown(description), demo]

# if __name__ == "__main__":
    # demo.launch()
#    interface.launch()


HEADER = description
FOOTER = ""


def run():
    chatbot = gr.Chatbot(
        elem_id="chatbot",
        scale=1,
        show_copy_button=True,
        height="70%",
        layout="panel",
    )
    with gr.Blocks(fill_height=True) as demo:
        gr.Markdown(HEADER)
        gr.ChatInterface(
            fn=respond,
            stop_btn="Stop Generation",
            cache_examples=False,
            multimodal=False,
            chatbot=chatbot,
            additional_inputs_accordion=gr.Accordion(
                label="Parameters", open=False, render=False
            ),
            additional_inputs=[

                gr.Slider(
                    minimum=1,
                    maximum=4096,
                    step=1,
                    value=1024,
                    label="Max tokens",
                    visible=True,
                    render=False,
                ),
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.3,
                    label="Temperature",
                    visible=True,
                    render=False,
                ),
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=1.0,
                    label="Top-p",
                    visible=True,
                    render=False,
                ),
            ],
            analytics_enabled=False,
        )
        gr.Markdown(FOOTER)
    demo.queue(max_size=256, api_open=False)
    demo.launch(share=False, quiet=True)


if __name__ == "__main__":
    run()