Spaces:
Running
Running
File size: 7,093 Bytes
9230ccf b8c3f0e af40ecb e9a3cc7 af40ecb eb0d262 9230ccf b8c3f0e 9230ccf e9a3cc7 9230ccf 41b93dc 9230ccf eb0d262 41b93dc 9230ccf e9a3cc7 b865247 4f21439 9230ccf 104a909 9230ccf e9a3cc7 9230ccf e9a3cc7 9230ccf dedce6c a885267 dedce6c e9a3cc7 0882058 a885267 0798f48 5ae4121 0798f48 e9a3cc7 0798f48 e9a3cc7 0798f48 e9a3cc7 fbc1761 e9a3cc7 0798f48 e9a3cc7 0798f48 e9a3cc7 8022e8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
from openai import OpenAI
import os
import json
from datetime import datetime
from zoneinfo import ZoneInfo
import uuid
from pathlib import Path
from huggingface_hub import CommitScheduler
openai_api_key = os.getenv('api_key')
openai_api_base = os.getenv('url')
model_name = "weblab-GENIAC/Tanuki-8x8B-dpo-v1.0"
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
# Define the file where to save the data. Use UUID to make sure not to overwrite existing data from a previous run.
feedback_file = Path("user_feedback/") / f"data_{uuid.uuid4()}.json"
feedback_folder = feedback_file.parent
# Schedule regular uploads. Remote repo and local folder are created if they don't already exist.
scheduler = CommitScheduler(
repo_id="kanhatakeyama/TanukiChat", # Replace with your actual repo ID
repo_type="dataset",
folder_path=feedback_folder,
path_in_repo="data",
every=1, # Upload every 1 minutes
)
def save_or_update_conversation(conversation_id, message, response, message_index, liked=None):
"""
Save or update conversation data in a JSON Lines file.
If the entry already exists (same id and message_index), update the 'label' field.
Otherwise, append a new entry.
"""
with scheduler.lock:
# Read existing data
data = []
if feedback_file.exists():
with feedback_file.open("r") as f:
data = [json.loads(line) for line in f if line.strip()]
# Find if an entry with the same id and message_index exists
entry_index = next((i for i, entry in enumerate(data) if entry['id'] == conversation_id and entry['message_index'] == message_index), None)
if entry_index is not None:
# Update existing entry
data[entry_index]['label'] = liked
else:
# Append new entry
data.append({
"id": conversation_id,
"timestamp": datetime.now(ZoneInfo("Asia/Tokyo")).isoformat(),
"prompt": message,
"completion": response,
"message_index": message_index,
"label": liked
})
# Write updated data back to file
with feedback_file.open("w") as f:
for entry in data:
f.write(json.dumps(entry) + "\n")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [
{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for chunk in client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if chunk.choices[0].delta.content is not None:
response += chunk.choices[0].delta.content
yield response
# Save conversation after the full response is generated
message_index = len(history)
save_or_update_conversation(conversation_id, message, response, message_index)
def vote(data: gr.LikeData, history, conversation_id):
"""
Update user feedback (like/dislike) in the local file.
"""
message_index = data.index[0]
liked = data.liked
save_or_update_conversation(conversation_id, None, None, message_index, liked)
def create_conversation_id():
return str(uuid.uuid4())
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
description = """
### [Tanuki-8x8B-dpo-v1.0](https://huggingface.co/weblab-GENIAC/Tanuki-8x8B-dpo-v1.0)との会話(期間限定での公開)
- 人工知能開発のため、原則として**このChatBotの入出力データは全て著作権フリー(CC0)で公開する**ため、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。
- データセットはこちらで公開しています。
- **上記の条件に同意する場合のみ**、以下のChatbotを利用してください。
"""
HEADER = description
FOOTER = """### 注意
- コンテクスト長が4096までなので、あまり会話が長くなると、エラーで停止します。ページを再読み込みしてください。
- GPUサーバーが不安定なので、応答しないことがあるかもしれません。"""
def run():
conversation_id = gr.State(create_conversation_id)
chatbot = gr.Chatbot(
elem_id="chatbot",
scale=1,
show_copy_button=True,
height="70%",
layout="panel",
)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown(HEADER)
chat_interface = gr.ChatInterface(
fn=respond,
stop_btn="Stop Generation",
cache_examples=False,
multimodal=False,
chatbot=chatbot,
additional_inputs_accordion=gr.Accordion(
label="Parameters", open=False, render=False
),
additional_inputs=[
additional_inputs=[
gr.Textbox(value="以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。",
label="System message(試験用: 変えると性能が低下する可能性があります。)",
render=False,),
conversation_id,
gr.Slider(
minimum=1,
maximum=4096,
step=1,
value=1024,
label="Max tokens",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=1.0,
label="Top-p",
visible=True,
render=False,
),
],
analytics_enabled=False,
)
chatbot.like(vote, [chatbot, conversation_id], None)
gr.Markdown(FOOTER)
demo.queue(max_size=256, api_open=True)
demo.launch(share=True, quiet=True)
if __name__ == "__main__":
run()
|