Spaces:
Running
Running
File size: 4,350 Bytes
9230ccf b865247 b8c3f0e af40ecb eb0d262 9230ccf b8c3f0e 9230ccf 41b93dc 9230ccf eb0d262 41b93dc 9230ccf 4f21439 b865247 4f21439 9230ccf 104a909 9230ccf 34c2c1b defe68e 9230ccf b8c3f0e 9230ccf dedce6c a885267 dedce6c 0882058 a885267 0798f48 5ae4121 0798f48 fbc1761 0798f48 8022e8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import gradio as gr
# from huggingface_hub import InferenceClient
from openai import OpenAI
import os
openai_api_key = os.getenv('api_key')
openai_api_base = os.getenv('url')
model_name = "weblab-GENIAC/Tanuki-8x8B-dpo-v1.0"
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [
{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
# response += token
if token is not None:
response += (token)
if response.find("### 指示:")>0:
break
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
description = """
### [Tanuki-8x8B-dpo-v1.0](https://huggingface.co/weblab-GENIAC/Tanuki-8x8B-dpo-v1.0)との会話(期間限定での公開)
- 人工知能開発のため、原則として**このChatBotの入出力データは全て著作権フリー(CC0)で公開予定です**ので、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。
- **上記の条件に同意する場合のみ**、以下のChatbotを利用してください。
"""
HEADER = description
FOOTER = """### 注意
- コンテクスト長が4096までなので、あまり会話が長くなると、エラーで停止します。ページを再読み込みしてください。
- GPUサーバーが不安定なので、応答しないことがあるかもしれません。"""
def run():
chatbot = gr.Chatbot(
elem_id="chatbot",
scale=1,
show_copy_button=True,
height="70%",
layout="panel",
)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown(HEADER)
gr.ChatInterface(
fn=respond,
stop_btn="Stop Generation",
cache_examples=False,
multimodal=False,
chatbot=chatbot,
additional_inputs_accordion=gr.Accordion(
label="Parameters", open=False, render=False
),
additional_inputs=[
gr.Textbox(value="以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。",
label="System message(試験用: 変えると出力が壊れる可能性)",
render=False,),
gr.Slider(
minimum=1,
maximum=4096,
step=1,
value=1024,
label="Max tokens",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=1.0,
label="Top-p",
visible=True,
render=False,
),
],
analytics_enabled=False,
)
gr.Markdown(FOOTER)
demo.queue(max_size=256, api_open=False)
demo.launch(share=False, quiet=True)
if __name__ == "__main__":
run()
|